ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

Вниз   Решение


Автор: Тарасов А.

  Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
  а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
  б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.

ВверхВниз   Решение


m и n – натуральные числа,  m < n.  Докажите, что  

ВверхВниз   Решение


Докажите, что если углы выпуклого пятиугольника образуют арифметическую прогрессию, то каждый из них больше  36o.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 64403

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Выход в пространство ]
[ Окружность Аполлония ]
[ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
Сложность: 4+

Пусть X – такая точка внутри треугольника ABC, что  XA·BC = XB·AC = XC·ABI1, I2, I3 – центры вписанных окружностей треугольников XBC, XCA и XAB соответственно. Докажите, что прямые AI1, BI2 и CI3 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 66309

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Касающиеся окружности ]
[ Поворотная гомотетия (прочее) ]
[ Инверсия помогает решить задачу ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 9,10

Автор: Mahdi Etesami Fard

Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.

Прислать комментарий     Решение

Задача 116602

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Отношение, в котором биссектриса делит сторону ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 8,9,10

Выпуклый четырёхугольник ABCD таков, что  AB·CD = AD·BC.  Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.

Прислать комментарий     Решение

Задача 64976

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Построение треугольников по различным точкам ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Окружность Аполлония ]
Сложность: 4
Классы: 9,10,11

Восстановите равнобедренный треугольник ABC  (AB = AC)  по точкам I, M, H пересечения биссектрис, медиан и высот соответственно.

Прислать комментарий     Решение

Задача 115948

Темы:   [ Концентрические окружности ]
[ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Окружность Аполлония ]
Сложность: 4
Классы: 8,9,10,11

Две окружности с радиусами 1 и 2 имеют общий центр в точке O. Вершина A правильного треугольника ABC лежит на большей окружности, а середина стороны BC – на меньшей. Чему может быть равен угол BOC?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .