ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 143]      



Задача 115343

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Пусть I и IA – соответственно центры вписанной и вневписанной окружностей треугольника ABC. Прямая lA проходит через ортоцентры треугольников BIC и BIAC. Аналогичным образом определяются прямые lB и lC . Докажите, что прямые lA, lB и lC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116189

Темы:   [ Вписанные и описанные окружности ]
[ Подобные треугольники (прочее) ]
[ Вневписанные окружности ]
[ Точка Нагеля. Прямая Нагеля ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Пусть A1, B1, C1 – середины сторон треугольника ABC, I – центр вписанной в него окружности, C2 – точка пересечения прямых C1I и A1B1, C3 – точка пересечения прямых CC2 и AB. Докажите, что прямая IC3 перпендикулярна прямой AB.

Прислать комментарий     Решение

Задача 116945

Темы:   [ Общая касательная к двум окружностям ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вневписанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

К двум непересекающимся окружностям ω1 и ω2 проведены три общие касательные – две внешние, a и b, и одна внутренняя, c. Прямые a, b и c касаются окружности ω1 в точках A1, B1 и C1 соответственно, а окружности ω2 – в точках A2, B2 и C2 соответственно. Докажите, что отношение площадей треугольников A1B1C1 и A2B2C2 равно отношению радиусов окружностей ω1 и ω2.

Прислать комментарий     Решение

Задача 108129

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4+
Классы: 8,9

В неравнобедреном треугольнике ABC точка I – центр вписанной окружности, I' – центр окружности, касающейся стороны AB и продолжений сторон CB и CA; L и L' – точки, в которых сторона AB касается этих окружностей.
Докажите, что прямые IL', I'L и высота CH треугольника ABC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 67227

Темы:   [ Гомотетия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Трапеции (прочее) ]
Сложность: 4+
Классы: 9,10,11

Авторы: Mudgal A., Srivastava P.

В неравнобедренном треугольнике $ABC$ точка $M$ – середина $BC$, $P$ – ближайшая к $A$ точка пересечения луча $AM$ и вписанной окружности треугольника, $Q$ – дальняя от $A$ точка пересечения луча $AM$ и вневписанной окружности. Касательная к вписанной окружности в точке $P$ пересекает $BC$ в точке $X$, а касательная к вневписанной окружности в точке $Q$ пересекает $BC$ в точке $Y$. Докажите, что $MX=MY$.
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 143]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .