ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 297]      



Задача 55511

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средняя линия треугольника ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Окружность касается двух параллельных прямых l и m в точках A и B соответственно; CD — диаметр окружности, параллельный этим прямым. Прямая BC пересекает прямую l в точке E, а прямая ED — прямую m в точке F. Найдите углы треугольника BEF.

Прислать комментарий     Решение


Задача 55549

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Диаметр AB окружности равен 1. На нем отложен отрезок AC, равный a. Проведена также хорда AD, равная b. Из точки C восстановлен перпендикуляр к AB, пересекающий хорду AD в точке E, а из точки D опущен перпендикуляр DF на AB (см. рисунок). Оказалось, что AE = AF. Докажите, что a = b3.

Прислать комментарий     Решение


Задача 54920

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

В окружности радиуса R проведены хорда AB и диаметр AC. Хорда PQ, перпендикулярная диаметру AC, пересекает хорду AB в точке M. Известно, что AB = a, PM : MQ = 3. Найдите AM.

Прислать комментарий     Решение


Задача 78207

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 4-
Классы: 8,9

M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.
Прислать комментарий     Решение


Задача 115370

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

Пусть точки A , B , C лежат на окружности, а прямая b касается этой окружности в точке B . Из точки P , лежащей на прямой b , опущены перпендикуляры PA1 и PC1 на прямые AB и BC соответственно (точки A1 и C1 лежат на отрезках AB и BC ). Докажите, что A1C1 AC .
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 297]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .