Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 257]
|
|
Сложность: 4 Классы: 10,11
|
У белой сферы 12% её площади окрашено в красный цвет. Доказать, что в сферу
можно вписать параллелепипед, у которого все вершины белые.
|
|
Сложность: 4 Классы: 10,11
|
В куб
ABCDA1
B1
C1
D1
со стороной 1 вписана сфера.
Точка
E расположена на ребре
CC1
, причём
C1
E = .
Из точки
E проведена касательная к сфере, пересекающая грань куба
AA1
D1
D в точке
K , причём
KEC = arccos .
Найдите
KE .
Сфера радиуса
вписана в четырёхугольную пирамиду
SABCD , у
которой основанием служит ромб
ABCD , такой, что
BAD = 60
o ;
высота пирамиды, равная 1, проходит через точку
K пересечения диагоналей
ромба. Докажите, что существует единственная плоскость,
пересекающая рёбра основания
AB и
AD в некоторых точках
M и
N ,
таких, что
MN = , касающаяся сферы в точке, удалённой на
равные расстояния от точек
M и
N , и пересекающая продолжение
отрезка
SK за точку
K в некоторой точке
E . Найдите длину отрезка
SE .
|
|
Сложность: 4 Классы: 10,11
|
В правильной треугольной пирамиде расположен шар радиуса 1. В
точке, делящей пополам высоту пирамиды, он касается внешним образом
полушара. Полушар опирается на круг, вписанный в основание
пирамиды, шар касается боковых граней пирамиды. Найдите площадь
боковой поверхности пирамиды и угол между боковыми гранями
пирамиды.
|
|
Сложность: 4 Классы: 10,11
|
В правильной четырёхугольной пирамиде расположены два шара
Q1
и
Q2
. Шар
Q1
вписан в пирамиду и имеет радиус 2, шар
Q2
касается внешним образом шара
Q1
и боковых граней пирамиды. Его
радиус равен 1. Найдите площадь боковой поверхности пирамиды и угол
между соседними боковыми гранями.
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 257]