ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 257]      



Задача 110480

Темы:   [ Прямоугольные параллелепипеды ]
[ Сфера, вписанная в трехгранный угол ]
Сложность: 3
Классы: 10,11

В прямоугольном параллелепипеде KLMNK1L1M1N1 ( KK1|| LL1 || MM1|| NN1 ) известно, что KL=LM=b , KK1=2b . Плоскость сечения проходит через точки M1 и K параллельно прямой LN . Найдите радиус шара, касающегося этого сечения и трёх граней параллелепипеда с общей вершиной M .
Прислать комментарий     Решение


Задача 111188

Темы:   [ Касающиеся сферы ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Три шара касаются некоторой плоскости и попарно касаются друг друга. Найдите радиусы шаров, если известно, что точки касания шаров с плоскостью являются вершинами треугольника со сторонами a , b и c .
Прислать комментарий     Решение


Задача 66319

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 10,11

Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

Прислать комментарий     Решение

Задача 116823

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Сферы (прочее) ]
[ Правильные многоугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3+
Классы: 10,11

Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:
   а) равные многоугольники;
   б) правильные многоугольники?

Прислать комментарий     Решение

Задача 66641

Темы:   [ Раскраски ]
[ Сферы (прочее) ]
[ Куб ]
[ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 10,11

Известно, что если у правильного $N$-угольника, находящегося внутри окружности, продлить все стороны до пересечения с этой окружностью, то $2N$ добавленных к сторонам отрезков можно разбить на две группы с одинаковой суммой длин.

А верно ли аналогичное утверждение для находящегося внутри сферы

а) произвольного куба;

б) произвольного правильного тетраэдра?

(Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.)

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 257]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .