ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 257]      



Задача 64782

Темы:   [ Сфера, описанная около тетраэдра ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Сфера ω проходит через вершину S пирамиды SABC и пересекает рёбра SA, SB и SC вторично в точках A1, B1 и C1 соответственно. Сфера Ω, описанная около пирамиды SABC, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (ABC). Точки A2, B2 и C2 симметричны точкам A1, B1 и C1 относительно середин рёбер SA, SB и SC соответственно. Докажите, что точки A, B, C, A2, B2 и C2 лежат на одной сфере.

Прислать комментарий     Решение

Задача 79292

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Касательные к сферам ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 10,11

Шарообразная планета окружена 37-ю точечными астероидами. Доказать, что в любой момент на поверхности планеты найдётся точка, из которой астроном не сможет наблюдать более 17 астероидов.

Примечание. Астероид, расположенный на линии горизонта, не виден.
Прислать комментарий     Решение


Задача 110292

Темы:   [ Сфера, вписанная в многогранный угол ]
[ Касательные к сферам ]
[ Симметрия относительно плоскости ]
Сложность: 4-
Классы: 10,11

Докажите, что если в четырёхгранный угол можно вписать сферу, то суммы противоположных плоских углов этого четырёхгранного угла равны.

Прислать комментарий     Решение

Задача 66250

Темы:   [ Тетраэдр (прочее) ]
[ Радикальная плоскость ]
Сложность: 4
Классы: 10,11

Автор: Ягудин М.

Дан тетраэдр ABCD. В грани ABC и ABD вписаны окружности с центрами O1, O2, касающиеся ребра AB в точках T1, T2. Плоскость πAB проходит через середину отрезка T1T2 и перпендикулярна O1O2. Аналогично определяются плоскости πAC, πBC, πAD, πBD, πCD. Докажите, что все эти шесть плоскостей проходят через одну точку.
Прислать комментарий     Решение


Задача 67001

Темы:   [ Окружности на сфере ]
[ Сферы (прочее) ]
[ Кратчайший путь по поверхности ]
Сложность: 4
Классы: 10,11

Луноход ездит по поверхности планеты, имеющей форму шара с длиной экватора 400 км. Планета считается полностью исследованной, если луноход побывал на расстоянии по поверхности не более 50 км от каждой точки поверхности и вернулся на базу (в исходную точку). Может ли луноход полностью исследовать планету, преодолев не более 600 км?
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 257]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .