Страница:
<< 89 90 91 92
93 94 95 >> [Всего задач: 538]
|
|
Сложность: 4 Классы: 10,11
|
В правильную четырёхугольную пирамиду вписан куб так,
что одно ребро куба лежит на средней линии основания
пирамиды; вершины куба, не принадлежащие этому ребру,
лежат на боковой поверхности пирамиды; центр куба лежит
на высоте пирамиды. Найдите отношение объёма пирамиды к
объёму куба.
|
|
Сложность: 4 Классы: 10,11
|
В правильной четырёхугольной пирамиде
SABCD сторона
основания
ABCD равна
a , высота равна
2
a .
Через вершину
A параллельно диагонали
BD основания
проведена плоскость так, что угол между прямой
AB и
этой плоскостью равен
30
o . Найдите площадь
сечения
|
|
Сложность: 4 Классы: 10,11
|
Дана правильная треугольная пирамида
SABC (
S – её
вершина). Ребро
SC этой пирамиды совпадает с боковым
ребром правильной треугольной призмы
A1
B1
CA2
B2
S
(
A1
A2
,
B1
B2
и
CS – боковые рёбра, а
A1
B1
C – одно из оснований). Вершины призмы
A1
и
B1
лежат в плоскости грани
SAB пирамиды. Какую долю
от объёма всей пирамиды составляет объём части пирамиды,
лежащей внутри призмы, если отношение длины бокового ребра
призмы к длине стороны её основания равно
.
|
|
Сложность: 4 Классы: 10,11
|
Дана правильная треугольная пирамида
SABC (
S – её
вершина), сторона основания которой равна
2
a . Ребро
SA
этой пирамиды совпадает с боковым
ребром правильной треугольной призмы
AB1
C1
SB2
C2
(
AS ,
B1
B2
и
C1
C2
– боковые рёбра призмы, а
AB1
C1
– одно из оснований). Вершины
B1
и
C1
призмы лежат в плоскости грани
SBС пирамиды.
Плоскость основания призмы
ABC пирамиды рассекает призму на
две равные по объёму части. Найдите объём призмы.
|
|
Сложность: 4 Классы: 10,11
|
В правильной треугольной пирамиде сторона основания равна
a , угол
между апофемой и боковой гранью равен
. Найдите высоту
пирамиды.
Страница:
<< 89 90 91 92
93 94 95 >> [Всего задач: 538]