Страница:
<< 22 23 24 25 26 27
28 >> [Всего задач: 138]
[Числа Стирлинга]
|
|
Сложность: 5 Классы: 8,9,10,11
|
Обозначим через Tk(n) сумму произведений по k чисел от 1 до n. Например, T2(4) = 1·2 + 1·3 + 1·4 + 2·3 + 2·4 + 3·4.
а) Найдите формулы для T2(n) и T3(n).
б) Докажите, что Tk(n) является многочленом от n степени 2k.
в) Укажите метод нахождения многочленов Tk(n) при k = 2, 3, 4, ... и примените его для отыскания многочленов T4(n) и T5(n).
На графике функции $y=1/x$ Миша отмечал подряд все точки с абсциссами
1, 2, 3, ..., пока не устал. Потом пришла Маша и закрасила все
прямоугольники, одна из вершин которых — это отмеченная точка, еще
одна — начало координат, а еще две лежат на осях (на рисунке
показано, какой прямоугольник Маша закрасила бы для отмеченной точки
$P$). Затем учительница попросила ребят посчитать площадь фигуры,
состоящей из всех точек, закрашенных ровно один раз. Сколько
получилось?
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите справедливость следующих сравнений:
а) 1 + 2 + 3 + ... + 12 ≡ 1 + 2 + 22 + ... + 211 (mod 13);
б) 1² + 2² + 3² + ... + 12² ≡ 1 + 4 + 42 + ... + 411 (mod 13).
[Гармонические числа]
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что числа Hn = 1 + 1/2 + 1/3 + ... + 1/n при n > 1 не будут целыми.
|
|
Сложность: 4 Классы: 9,10,11
|
На сушке в случайном порядке (как достали из стиральной машины) висит n
носков. Среди них – два любимых носка Рассеянного Учёного. Носки загорожены сохнущей простыней, поэтому Учёный их не видит, и достаёт по одному носку на ощупь. Найдите математическое ожидание числа носков, снятых Учёным к моменту, когда у него окажутся оба любимых носка.
Страница:
<< 22 23 24 25 26 27
28 >> [Всего задач: 138]