ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC проведена биссектриса AD
и из точки D опущены перпендикуляры DB' и DC' на прямые AC
и AB; точка M лежит на прямой B'C', причем
DM Точка P движется по описанной окружности
треугольника ABC. Докажите, что при этом прямая Симсона точки P
относительно треугольника ABC поворачивается на угол, равный половине
угловой величины дуги, пройденной точкой P.
Найдите двузначное число, которое в 5 раз больше суммы своих цифр. Попытайтесь получить миллиард (1000000000), перемножая два целых сомножителя, в каждом из которых не было бы ни одного нуля. Известно, что в январе четыре пятницы и четыре понедельника. На какой день недели приходится 1 января? Найдите наибольшее число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр. |
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 517]
Два правильных тетраэдра ABCD и MNPQ расположены так, что плоскости BCD и NPQ совпадают, вершина M лежит на высоте AO первого тетраэдра, а плоскость MNP проходит через центр грани ABC и середину ребра BD. Найдите отношение длин рёбер тетраэдров.
В трапеции ABCD с основаниями AD и BC на стороне AB взята такая точка E, что AE : BE = AD : BC. Точка H – проекция точки D на прямую CE.
На сторонах AB и BC треугольника ABC выбраны соответственно точки X и Y так, что ∠AXY = 2∠C, ∠CYX = 2∠A.
Четырехугольник ABCD без равных и без параллельных сторон описан около окружности с центром I. Точки K, L, M и N – середины сторон AB, BC, CD и DA. Известно, что AB⋅CD=4IK⋅IM. Докажите, что BC⋅AD=4IL⋅IN.
На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 517]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке