|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости дан угол и точка К внутри него. Доказать, что найдётся точка М, обладающая следующим свойством: если произвольная прямая, проходящая через К, пересекает стороны угла в точках А и В, то МК является биссектрисой угла АМВ. Через каждую вершину четырехугольника проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части. a) Докажите, что и четвертая прямая обладает тем же свойством. б) Какие значения могут принимать углы этого четырехугольника, если один из них равен 72o ? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149]
Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.
Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что BX = BY.
Две окружности пересекаются в точках P и Q. Tочка A лежит на первой окружности, но вне второй. Прямые AP и AQ пересекают вторую окружность в точках B и C соответственно. Укажите положение точки A, при котором треугольник ABC имеет наибольшую площадь.
Две окружности пересекаются в точках A и B. Прямая, проходящая через точку A, пересекает окружности в точках M и N, отличных от A, а параллельная ей прямая, проходящая через B, — соответственно в точках P и Q, отличных от B. Докажите, что MN = PQ.
Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите модуль разности отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по одну сторону от общей хорды AB.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|