Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Существует ли треугольник со сторонами a = 7 и b = 2, если известно, что высота, опущенная на третью сторону этого треугольника, является средним геометрическим двух других высот?

Вниз   Решение


Докажите, что если среди полученных фигур есть p-звенная и q-звенная, то p + q$ \le$n + 4.

ВверхВниз   Решение


К натуральному числу  a > 1  приписали это же число и получили число b, кратное a². Найдите все возможные значения числа  b/a².

ВверхВниз   Решение


Петя записал несколько алгебраических выражений, возвёл каждое из них в квадрат и сложил результаты.
Могло ли у него в итоге получиться выражение  x² + y² + z² + 3y + 4x + xz + 1?

ВверхВниз   Решение


Гриша записал на доске 100 чисел. Затем он увеличил каждое число на 1 и заметил, что произведение всех 100 чисел не изменилось. Он опять увеличил каждое число на 1, и снова произведение всех чисел не изменилось, и так далее. Всего Гриша повторил эту процедуру k раз, и все k раз произведение чисел не менялось. Найдите наибольшее возможное значение k.

ВверхВниз   Решение


Найдите натуральное число вида  n = 2x3y5z,  зная, что половина его имеет на 30 делителей меньше, треть – на 35 и пятая часть – на 42 делителя меньше, чем само число.

ВверхВниз   Решение


Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что  AD = BC.  Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.

ВверхВниз   Решение


Даны две точки A и B. Две окружности касаются прямой AB (одна — в точке A, другая — в точке B) и касаются друг друга в точке M. Найдите ГМТ M.

ВверхВниз   Решение


  а) Прямоугольная таблица из m строк и n столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это.
  б) Что будет, если действовать в другом порядке: в первоначальной таблице сначала переставить числа по возрастанию в столбцах, а потом – в строках: получится ли в результате та же самая таблица, что и в первом случае, или другая?

ВверхВниз   Решение


Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120o . Найдите площадь треугольника.

ВверхВниз   Решение


Даны непересекающиеся хорды AB и CD окружности. Постройте точку X окружности так, чтобы хорды AX и BX высекали на хорде CD отрезок EF, имеющий данную длину a.

ВверхВниз   Решение


Основание пирамиды – треугольник со сторонами 10, 13, 13. Площади боковых граней соответственно равны 150, 195, 195. Найдите высоту пирамиды.

ВверхВниз   Решение


В квадрате ABCD площади 1 сторона AD продолжена за точку D и на продолжении взята точка O,  OD = 3.  Из точки O проведены два луча. Первый пересекает отрезок CD в точке M и отрезок AB в точке N, второй пересекает отрезок CD в точке L и отрезок BC в точке K,  ON = a,  ∠BKL = α.  Найдите площадь многоугольника BKLMN.

ВверхВниз   Решение


В прямоугольном треугольнике катеты равны 75 и 100. На отрезках гипотенузы, образуемых основанием высоты, построены полуокружности по одну сторону с данным треугольником. Найдите отрезки катетов, заключённые внутри полукругов.

Вверх   Решение

Задача 52907
Темы:    [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В прямоугольном треугольнике катеты равны 75 и 100. На отрезках гипотенузы, образуемых основанием высоты, построены полуокружности по одну сторону с данным треугольником. Найдите отрезки катетов, заключённые внутри полукругов.


Подсказка

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и своей проекцией на гипотенузу. Примените эту теорему к каждому из двух прямоугольных треугольников, на которые указанная высота разбивает данный треугольник.


Решение

Пусть M — основание высоты CM треугольника ABC, BC = 75, AC = 100, BD и AE — искомые отрезки. Тогда

AB = $\displaystyle \sqrt{100^{2}+75^{2}}$ = 125, CM = $\displaystyle {\frac{BC\cdot AC}{AB}}$ = $\displaystyle {\frac{75\cdot 100}{125}}$ = 60.

Отрезок MD — высота прямоугольного треугольника BMC, опущенная из вершины прямого угла M на гипотенузу BC, поэтому

MC2 = CD . CB, или 602 = (75 - BD)75.

Откуда находим, что BD = 27. Аналогично найдём AE.


Ответ

27 и 64.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 574

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .