Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым.

Вниз   Решение


К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.

ВверхВниз   Решение


Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода).

ВверхВниз   Решение


Из всех параллелограммов данной площади найти тот, у которого наибольшая диагональ минимальна.

ВверхВниз   Решение


Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.

ВверхВниз   Решение


В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы.

ВверхВниз   Решение


В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении.
Доказать, что сумма всех чисел в таблице равна единице, или все числа равны нулю.

ВверхВниз   Решение


На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Докажите, что  SABCD ≥ 3SBCM.

ВверхВниз   Решение


Точки M, N, K – середины рёбер соответственно AB, BC, DD1 параллелепипеда ABCDA1B1C1D1.
  а) Постройте сечение параллелепипеда плоскостью, проходящей через точки M, N, K.
  б) В каком отношении эта плоскость делит ребро CC1 и диагональ DB1?
  в) В каком отношении эта плоскость делит объём параллелепипеда?

ВверхВниз   Решение


За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться?

ВверхВниз   Решение


а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.

ВверхВниз   Решение


Дан выпуклый четырёхугольник площади S. Внутри него выбирается точка и отображается симметрично относительно середин его сторон. Получаются четыре вершины нового четырёхугольника. Найдите его площадь.

ВверхВниз   Решение


Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.

ВверхВниз   Решение


В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
  а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
  б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1A2 – точка пересечения прямой A1I с плоскостью B1C1D1B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.

ВверхВниз   Решение


16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы $4\times4$ так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?

Вверх   Решение

Задача 67008
Темы:    [ Теория алгоритмов (прочее) ]
[ Числовые таблицы и их свойства ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы $4\times4$ так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?

Решение

Оценка. Занумеруем клетки, как показано на рисунке 1.

Заметим, что одна из клеток с номером 1 должна быть открыта, иначе красный и синий способы заполнения таблицы на рисунке 2 были бы неразличимы. Одна из клеток с номером 2 также должна быть открыта, иначе красный и синий способы заполнения таблицы на рисунке 3 были бы неразличимы.

Аналогично, должны быть открыты хотя бы по одной из клеток с номерами 3, 4, 5, 6, 7, 8, то есть должно быть открыто не менее 8 карточек.

Пример. Докажем, что увидев числа во втором и третьем столбце, мы сможем восстановить числа в первом и четвёртом столбцах. Заметим, что в чёрных клетках шахматной раскраски все числа одной чётности, в белых – другой. Увидев второй и третий столбцы, мы понимаем, в какой клетке какая чётность.

Из открытых клеток выделим те, для которых у записанного в клетке числа не все соседние числа открыты. Из каждой такой клетки проведём ребро в единственную неперевёрнутую соседнюю клетку и однозначно восстановим в ней число.

Заметим, что если в угол ведёт ребро, то мы восстановим число в нём. Если же в угловую клетку не ведёт ребро, то в ней стоит крайнее число, то есть 1 или 16, а так как мы знаем чётность числа в каждой клетке, то в этом случае мы тоже восстановим число в углу. Итак, числа в углах заведомо восстановлены.

Если среди угловых есть клетки, для которых не все соседние числа открыты, из каждого такого угла проведём ребро в неперевёрнутую соседнюю клетку и однозначно восстановим число в ней.

Остались не восстановленными разве что числа в неугловых клетках первого и четвёртого столбца. Рассмотрим любую из них. В неё не ведёт ребро ни из соседнего столбца, ни из угла, а тогда в этой клетке точно крайнее число (так как у неё осталась максимум одна клетка с соседним числом). По чётности легко узнаём, какое крайнее число там должно стоять.

Таким образом, мы восстановили числа во всех клетках.


Ответ

Восемь карточек.

Источники и прецеденты использования

олимпиада
Название Турнир городов
номер/год
Номер 39
Дата 2017/18
тур
Тур устный
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .