ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Остроугольный треугольник ABC вписан в окружность Ω. Касательные, проведённые к Ω в точках B и C, пересекаются в точке P. Точки D и E – основания перпендикуляров, опущенных из точки P на прямые AB и AC. Докажите, что точка пересечения высот треугольника ADE является серединой отрезка BC. На плоскости даны неравнобедренный треугольник, его описанная окружность, и отмечен центр его вписанной окружности. Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300? Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре? Пусть f(x) – некоторый многочлен ненулевой степени.
В треугольнике ABC AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что AE = ED. Найдите угол DAC. Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое). Какое наибольшее количество множителей вида В треугольнике ABC I и Ia – центры вписанной и вневписанной окружностей, A' точка описанной окружности, диаметрально противоположная A, AA1 – высота. Докажите, что ∠IA'Ia = ∠IA1Ia. Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он? На столе в ряд стоят $23$ шкатулки, в одной из которых находится приз. На каждой шкатулке написано либо «Здесь приза нет», либо «Приз в соседней шкатулке». Известно, что ровно одно из этих утверждений правдиво. Что написано на средней шкатулке? Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?
На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но
Постройте треугольник $ABC$ по вершине $A$, центру описанной окружности $O$ и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах $AB$ и $AC$ равные отрезки от вершины $A$. Незнайка знаком только с десятичными логарифмами и считает, что логарифм суммы двух чисел равен произведению их логарифмов, а логарифм разности двух чисел равен частному их логарифмов. Может ли Незнайка подобрать хотя бы одну пару чисел, для которой действительно верны одновременно оба этих равенства? С помощью волшебного банкомата можно поменять любую купюру на любое конечное число купюр меньшего достоинства. Получив 1000 франков одной бумажкой, сможете ли Вы каждый месяц платить квартплату? (Дело происходит в Швейцарии, где квартплата постоянна, а жизнь бесконечна.) Гидры состоят из голов и шей (каждая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить её на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более чем N ударов. В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника? |
Задача 67035
УсловиеВ выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника? РешениеРассмотрим 12-угольник $A_1A_2\ldots A_{12}$, удовлетворяющий условию задачи. У него десять сторон длины 1 и одна сторона длины 2. Обозначим через $x$ длину оставшейся стороны. Рассмотрим векторы $\overrightarrow{A_1A_2}$, $\overrightarrow{A_2A_3}, \ldots, \overrightarrow{A_{12}A_1}$, а также коллинеарные им единичные векторы $\vec{e}_1$, $\vec{e}_2, \ldots, \vec{e}_{12}$. Тогда для некоторых $i$ и $j$ имеет место равенство $$\vec{e}_1 +\ldots +2\vec{e}_i +\ldots +x\vec{e}_j +\ldots +\vec{e}_{12} =\vec{0}.$$ Помимо того, $$\vec{e}_1 +\vec{e}_7 =\vec{e}_2 +\vec{e}_8 =\ldots =\vec{e}_6 +\vec{e}_{12} =\vec{0},$$ поэтому $$\vec{e}_1 +\vec{e}_2 +\ldots +\vec{e}_{12} =\vec{0}.$$ Вычитая второе из полученных равенств из первого, получаем $\vec{e}_i +(x-1)\vec{e}_j = \vec{0}$. Это возможно лишь в случае, если $\vec{e}_i =-\vec{e}_j$ и $x =2$. Значит, в исходном 12-угольнике есть пара параллельных сторон длины 2. В силу равенства всех углов и соответствующих сторон этот 12-угольник
имеет ось симметрии (см. рисунок). Чтобы найти площадь, разобьём его на 4 трапеции и прямоугольник. Находим $A_3A_{12}=A_6A_9=1+\sqrt{3}$, $A_4A_{11}=A_5A_{10} =2+\sqrt{3}$, поэтому искомая площадь
равна
$$S=2\cdot(2+\sqrt{3})+\frac{\sqrt{3}\cdot(2+\sqrt{3}+1+\sqrt{3})}{2}+\frac{1+\sqrt{3}+1}{2}=8+4\sqrt{3}.$$ Ответ$8+4\sqrt{3}$. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке