ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.
Два треугольника A1B1C1 и A2B2C2, площади которых равны соответственно S1 и S2, расположены так, что лучи A1B1 и A2B2, B1C1 и B2C2, C1A1 и C2A2 противоположно направлены. Найдите площадь треугольника с вершинами в серединах отрезков A1A2, B1B2, C1C2.
Решите задачу 5.85, а) с помощью теоремы Менелая.
На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём r1 > r2 и r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус. Из Южной Америки в Россию 2010 кораблей везут бананы, лимоны и ананасы. Число бананов на каждом корабле равно числу лимонов на остальных кораблях вместе взятых, а число лимонов на каждом корабле равно числу ананасов на остальных кораблях вместе взятых. Докажите, что общее число фруктов делится на 31. В шести корзинах лежат груши, сливы и яблоки. Число слив в каждой корзине равно числу яблок в остальных корзинах вместе взятых, а число яблок в каждой корзине равно числу груш в остальных корзинах вместе взятых. Докажите, что общее число фруктов делится на 31. У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань. Пусть числа a и b определены равенством a/b = [a0; a1, a2, ..., an]. Докажите, что уравнение ax – by = 1 c неизвестными x и y имеет решением одну из пар (Qn–1, Pn–1) или (– Qn–1, – Pn–1), где Pn–1/Qn–1 – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением? На почтовом ящике написано: "Выемка писем производится пять раз в день с 7 до 19 ч". И действительно, первый раз почтальон забирает почту в 7 ч утра, а последний — в 7 ч вечера. Через какие интервалы времени вынимают письма из ящика? Изобразите на фазовой плоскости Opq множество точек (p, q), для которых уравнение x³ + px + q = 0 имеет три различных корня, принадлежащих интервалу (–2, 4). Дан многочлен P(x) = a2nx2n + a2n–1x2n–1 + ... + a1x + a0, у которого каждый коэффициент ai принадлежит отрезку [100, 101]. Существуют ли такие натуральные числа a, b, c, d, что a³ + b³ + c³ + d³ = 100100 ? Окружность S касается окружностей S1 и S2 в точках A1 и A2. Малыш и Карлсон режут квадратный торт. Карлсон выбирает на нём точку (не на границе). После этого Малыш делает прямолинейный разрез от выбранной точки до края (в любом направлении). Затем Карлсон проводит второй прямолинейный разрез от выбранной точки до края, перпендикулярный первому, и отдаёт меньший из получившихся двух кусков Малышу. Малыш хочет получить хотя бы четверть торта. Может ли Карлсон ему помешать? На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников. |
Задача 73871
УсловиеНа плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
РешениеВозьмем на плоскости произвольную прямую l и спроецируем на нее все многоугольники. При этом мы получим несколько отрезков, любые два из которых имеют общую точку. Рассмотрим левые концы этих отрезков и выберем из них самый правый (чтобы стало ясно, что значит «правый» и «левый», на прямой нужно задать направление). Полученная точка принадлежит всем отрезкам, поэтому проведенный через нее перпендикуляр к прямой l пересекает все данные многоугольники. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке