ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Косухин О.Н.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 116226

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
Сложность: 2
Классы: 10,11

Последовательность из двух различных чисел продолжили двумя способами: так, чтобы получилась геометрическая прогрессия, и так, чтобы получилась арифметическая прогрессия. При этом третий член геометрической прогрессии совпал с десятым членом арифметической прогрессии. А с каким членом арифметической прогрессии совпал четвёртый член геометрической прогрессии?

Прислать комментарий     Решение

Задача 115510

Темы:   [ Обыкновенные дроби ]
[ Монотонность и ограниченность ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 6,7,8,9,10,11

Какое наибольшее значение может принимать выражение     где a, b, c – попарно различные ненулевые цифры?

Прислать комментарий     Решение

Задача 116227

Тема:   [ Многочлены (прочее) ]
Сложность: 3
Классы: 10,11

Сравните между собой наименьшие положительные корни многочленов  x2011 + 2011x – 1  и  x2011 – 2011x + 1.

Прислать комментарий     Решение

Задача 65688

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 9,10,11

Найдите наименьшее натуральное число, десятичная запись квадрата которого оканчивается на 2016.

Прислать комментарий     Решение

Задача 116697

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 11

Для заданных значений a, b, c и d оказалось, что графики функций    и    имеют ровно одну общую точку. Докажите, что графики функций    и    также имеют ровно одну общую точку.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .