ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 97977

Темы:   [ Задачи на смеси и концентрации ]
[ Обыкновенные дроби ]
Сложность: 2
Классы: 6,7,8

Автор: Фольклор

Известно, что доля блондинов среди голубоглазых больше чем доля блондинов среди всех людей.
Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?

Прислать комментарий     Решение

Задача 97979

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

Докажите, что из любых семи натуральных чисел (не обязательно идущих подряд) можно выбрать три числа, сумма которых делится на 3.

Прислать комментарий     Решение

Задача 97980

Темы:   [ Раскраски ]
[ Куб ]
Сложность: 2+
Классы: 7,8,9,10

Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.

Прислать комментарий     Решение

Задача 97989

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Остовы многогранных фигур ]
[ Многогранники и многоугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Доказать, что в вершинах многогранника можно расставить натуральные числа так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Примечание: простых чисел бесконечно много.

Прислать комментарий     Решение

Задача 97997

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3-
Классы: 7,8,9

Автор: Назаров Ф.

Положительные числа a, b, c таковы, что  a ≥ b ≥ c  и  a + b + c ≤ 1.  Докажите, что  a² + 3b² + 5c² ≤ 1.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .