ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 65741  (#9.1)

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
Сложность: 3+
Классы: 8,9

Автор: Жуков Г.

У менялы на базаре есть много ковров. Он согласен взамен ковра размера a×b дать либо ковёр размера 1/a×1/b, либо два ковра размеров c×b и  a/c×b  (при каждом таком обмене число c клиент может выбрать сам). Путешественник рассказал, что изначально у него был один ковёр, стороны которого превосходили 1, а после нескольких таких обменов у него оказался набор ковров, у каждого из которых одна сторона длиннее 1, а другая – короче 1. Не обманывает ли он? (По просьбе клиента меняла готов ковёр размера a×b считать ковром размера b×a.)

Прислать комментарий     Решение

Задача 65749  (#10.1)

Темы:   [ Турниры и турнирные таблицы ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?

Прислать комментарий     Решение

Задача 65749  (#11.1)

Темы:   [ Турниры и турнирные таблицы ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?

Прислать комментарий     Решение

Задача 65742  (#9.2)

Темы:   [ Окружность, вписанная в угол ]
[ Четыре точки, лежащие на одной окружности ]
[ Две пары подобных треугольников ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9,10

Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что  KS || AC  и  LT || AB.  Докажите, что точки P, Q, S и T лежат на одной окружности.

Прислать комментарий     Решение

Задача 65750  (#10.2)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10

Диагонали AC и BD вписанного четырёхугольника ABCD пересекаются в точке P. Точка Q выбрана на отрезке BC так, что  PQAC.
Докажите, что прямая, проходящая через центры описанных окружностей ω1 и ω2 треугольников APD и BQD, параллельна прямой AD.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .