Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.

Вниз   Решение


Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.

ВверхВниз   Решение


В клетчатом квадрате 10×10 отмечены центры всех единичных квадратиков (всего 100 точек). Какое наименьшее число прямых, не параллельных сторонам квадрата,

нужно провести, чтобы вычеркнуть все отмеченные точки?

ВверхВниз   Решение


Bосстановите остроугольный треугольник по ортоцентру и серединам двух сторон.

ВверхВниз   Решение


Дан вписанный четырёхугольник ABCD. Точки P и Q симметричны точке C относительно прямых AB и AD соответственно.
Докажите, что прямая PQ проходит через ортоцентр H треугольника ABD.

ВверхВниз   Решение


Дан треугольник ABC. Пусть I – центр его вписанной окружности, и пусть X, Y, Z – центры вписанных окружностей треугольников AIB, BIC и AIC соответственно. Оказалось, что центр вписанной окружности треугольника XYZ совпадает с I. Обязательно ли тогда треугольник ABC равносторонний?

ВверхВниз   Решение


Дан выпуклый n-угольник A1...An. Пусть Pi  (i = 1, ..., n)  – такая точка на его границе, что прямая AiPi делит его площадь пополам. Известно, что все точки Pi не совпадают с вершинами и лежат на k сторонах n-угольника. Каково  а) наименьшее;  б) наибольшее возможное значение k при каждом данном n?

ВверхВниз   Решение


Назовём два неравных треугольника похожими, если можно обозначить их ABC и A'B'C' так, чтобы выполнялись равенства  AB = A'B',  AC = A'C'  и
B = ∠B'.  Существуют ли три попарно похожих треугольника?

ВверхВниз   Решение


На доске записаны числа 1, 2, 3, ..., 1000. Двое по очереди стирают по одному числу. Игра заканчивается, когда на доске остаются два числа. Если их сумма делится на 3, то побеждает тот, кто делал первый ход, если нет – то его партнер. Кто из них выиграет при правильной игре?

ВверхВниз   Решение


Обёрткой плоской картины размером 1×1 назовём прямоугольный лист бумаги площади 2, которым можно, не разрезая его, полностью обернуть картину с обеих сторон. Например, прямоугольник 2×1 и квадрат со стороной     – обёртки.
  а) Докажите, что есть и другие обёртки.
  б) Докажите, что обёрток бесконечно много.

ВверхВниз   Решение


Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

ВверхВниз   Решение


В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


ВверхВниз   Решение


Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

ВверхВниз   Решение


Решите уравнение  {(x + 1)³} = x³.

ВверхВниз   Решение


Турнир, в котором участвовало 20 спортсменов, судили 10 арбитров. Каждый сыграл с каждым один раз, и каждую встречу судил ровно один арбитр. После окончания каждой игры оба участника фотографировались с арбитром. Через год после турнира была найдена стопка из всех этих фотографий. Оказалось, что не про каждого можно определить, кем он является – спортсменом или арбитром. Сколько могло быть таких людей?

ВверхВниз   Решение


Радиусы описанной и вписанной окружностей треугольника ABC равны R и r; O, I – центры этих окружностей. Внешняя биссектриса угла C пересекает прямую AB в точке P. Точка Q – проекция точки P на прямую OI. Найдите расстояние OQ.

ВверхВниз   Решение


На окружности отметили n точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
Найдите все значения n, при которых это возможно.

ВверхВниз   Решение


На доске написано:
    В этом предложении ... процентов цифр делятся на 2, ... процентов цифр делятся на 3, а ... процентов цифр делятся и на 2 и на 3.
Вставьте вместо многоточий какие-нибудь целые числа так, чтобы написанное на доске утверждение стало верным.

ВверхВниз   Решение


Дракон запер в пещере шестерых гномов и сказал: "У меня есть семь колпаков семи цветов радуги. Завтра утром я завяжу вам глаза и надену на каждого по колпаку, а один колпак спрячу. Затем сниму повязки, и вы сможете увидеть колпаки на головах у других, но общаться я вам уже не позволю. После этого каждый втайне от других скажет мне цвет спрятанного колпака. Если угадают хотя бы трое, всех отпущу. Если меньше – съем на обед". Как гномам заранее договориться действовать, чтобы спастись?

ВверхВниз   Решение


Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?

Вверх   Решение

Все задачи автора

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 319]      



Задача 108177

Темы:   [ Правильные многоугольники ]
[ Вписанные и описанные окружности ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3+
Классы: 8,9

Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.

Прислать комментарий     Решение

Задача 109872

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?

Прислать комментарий     Решение

Задача 109922

Темы:   [ Выигрышные и проигрышные позиции ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске записаны числа 1, 2, 3, ..., 1000. Двое по очереди стирают по одному числу. Игра заканчивается, когда на доске остаются два числа. Если их сумма делится на 3, то побеждает тот, кто делал первый ход, если нет – то его партнер. Кто из них выиграет при правильной игре?

Прислать комментарий     Решение

Задача 109946

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Исследование квадратного трехчлена ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3+
Классы: 9,10

Решите уравнение  {(x + 1)³} = x³.

Прислать комментарий     Решение

Задача 111355

Темы:   [ Кооперативные алгоритмы ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 10,11

Фокусник с завязанными глазами выдаёт зрителю 29 карточек с номерами от 1 до 29. Зритель прячет две карточки, а остальные отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 319]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .