ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Николай Борисович Васильев(1940-1998) - математик, многолетний руководитель "Задачника Кванта", ведущий методист Всесоюзной заочной математической школы, в 1958-1979 - активнейший член жюри Московской, Всероссийской и Всесоюзной олимпиад, один из организаторов Турнира городов, автор книг "Задачи всесоюзных математических олимпиад", "Заочные математические олимпиады", "Прямые и кривые", "Математические соревнования. Геометрия". |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов. На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.
Докажите, что площадь выпуклого четырёхугольника равна половине произведения его диагоналей на синус угла между ними.
а) Докажите для всех n > 2 неравенство б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех n > 2 Художник-авангардист нарисовал картину "Контур квадрата и его диагонали". Числовая последовательность определяется условиями: Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
Докажите, что для любого k > 1 найдётся такая степень двойки, что среди k последних её цифр не менее половины составляют девятки.
Вершины правильного n-угольника окрашены в несколько цветов так, что точки каждого цвета служат вершинами правильного многоугольника.
Вокруг квадрата описан параллелограмм. Докажите,
что перпендикуляры, опущенные из вершин параллелограмма
на стороны квадрата, образуют квадрат.
Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке