Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Блинков А.Д.

Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

На стороне AC треугольника ABC взята точка A1, а на продолжении стороны BC за точку C взята точка C1, длина отрезка A1C равна 85% длины стороны AC, а длина отрезка BC1 равна 120% длины стороны BC. Сколько процентов площади треугольника ABC составляет площадь треугольника A1BC1?

Вниз   Решение


Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости.

ВверхВниз   Решение


Найти натуральное наименьшее целое число n такое, что n делится на 19, а n+2 делится на 82.

ВверхВниз   Решение


Найти такое трёхзначное число, удвоив которое, мы получим число, выражающее количество цифр, необходимое для написания всех последовательных целых чисел от единицы до этого искомого трёхзначного числа (включительно).

ВверхВниз   Решение


В треугольнике ABC угол C – прямой. Из центра C радиусом AC описана дуга, пересекающая гипотенузу в точке D, а катет CB – в точке E.
Найдите угловые величины дуг AD и DE, если  ∠B = 40°.

ВверхВниз   Решение


В футбольном чемпионате участвовали 16 команд. Каждая команда сыграла с каждой из остальных по одному разу, за победу давалось 3 очка, за ничью – 1 очко, за поражение – 0. Назовём команду успешной, если она набрала хотя бы половину от наибольшего возможного количества очков. Какое наибольшее количество успешных команд могло быть в турнире?

ВверхВниз   Решение


У квадратного уравнения  x² + px + q = 0  коэффициенты p и q увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.

ВверхВниз   Решение


Дано трёхзначное число, у которого первая и последняя цифра одинаковые.
Доказать, что число делится на 7 тогда и только тогда, когда делится на 7 сумма второй и третьей цифр.

ВверхВниз   Решение


Отрезки, соединяющие основания высот остроугольного треугольника, образуют прямоугольный треугольник с гипотенузой, равной 10. Найдите радиус окружности, описанной около исходного треугольника.

ВверхВниз   Решение


Докажите, что среди любых 11 чисел найдутся два, разность которых делится на десять.

ВверхВниз   Решение


Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

ВверхВниз   Решение


Внутри правильного n-угольника со стороной a вписано n равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух соседних кругов. Найти площадь "звёздочки", ограниченной только дугами вписанных кругов.

ВверхВниз   Решение


Каждая диагональ четырёхугольника разбивает его на два равнобедренных треугольника. Верно ли, что четырёхугольник – ромб?

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что  AC = 1,   BC = 3.
В каком отношении делит сторону DE биссектриса угла C?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 67137

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 6,7,8,9

Произведение пяти различных целых чисел равно 2022. Чему может равняться их сумма? Если ответов несколько — укажите их все.
Прислать комментарий     Решение


Задача 108086

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что  AC = 1,   BC = 3.
В каком отношении делит сторону DE биссектриса угла C?

Прислать комментарий     Решение

Задача 109495

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

Прислать комментарий     Решение

Задача 111318

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 6,7,8

На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально?

Прислать комментарий     Решение

Задача 111911

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

После урока на доске остался график функции  y = k/x  и пять прямых, параллельных прямой  y = kx  (k ≠ 0).
Найдите произведение абсцисс всех десяти точек пересечения.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .