ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Лев Александрович Емельянов - старший преподаватель Калужского государственного педагогического университета им. К.Э. Циолковского (КГПУ), член жюри Всероссийской олимпиады школьников по математике. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Есть бесконечная в одну сторону клетчатая полоска, клетки которой пронумерованы натуральными числами, и мешок с десятью камнями. В клетках полоски камней изначально нет. Можно делать следующее: – перемещать камень из мешка в первую клетку полоски или обратно; – если в клетке с номером $i$ лежит камень, то можно переложить камень из мешка в клетку с номером $i + 1$ или обратно. Можно ли, действуя по этим правилам, положить камень в клетку с номером 1000? Профессор Тестер проводит серию тестов, на основании которых он выставляет испытуемому средний балл. Закончив отвечать, Джон понял, что если бы он получил за последний тест 97 очков, то его средний балл составил бы 90; а если бы он получил за последний тест всего 73 очка, то его средний балл составил бы 87. Сколько тестов в серии профессора Тестера? К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости. На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN. а) В классе была дана контрольная. Известно, что по крайней мере ⅔ задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере ⅔ школьников. Известно также, что по крайней мере ⅔ школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере ⅔ задач контрольной. Могло ли такое быть? Изменится ли ответ, если везде в условии заменить ⅔ на б) ¾; в) 7/10? Последовательность Морса. Бесконечная последовательность из нулей и единиц
0110 1001 1001 0110 1001...
построена по следующему правилу. Сначала написан нуль. Затем
делается бесконечное количество шагов. На каждом шаге к уже
написанному куску последовательности приписывается новый кусок
той же длины, получаемый из него заменой всех нулей единицами, а
единиц — нулями.
а) Какая цифра стоит на 2001 месте? б) Будет ли эта последовательность, начиная с некоторого места, периодической? в) Докажите, что данная последовательность переходит в себя при замене каждого нуля на комбинацию 01, а каждой единицы — на комбинацию 10. г) Докажите, что ни одно конечно слово из нулей и единиц не встречается в последовательности Морса три раза подряд. д) Как, зная представление числа n в двоичной системе счисления, найти n-й элемент данной последовательности? Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой
ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем
путь в начальной точке. Участки пути, по которым мы приближались к центру
окружности, берём со знаком плюс, а участки пути, по которым мы
удалялись от центра, — со знаком минус. Докажите, что для любого
такого пути сумма длин участков пути, взятых с указанными
знаками, равна нулю.
В треугольнике ABC O, M, N – центр описанной окружности, центр тяжести и точка Нагеля соответственно. |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 90]
В неравнобедренном треугольнике ABC точки H и M – точки пересечения высот и медиан соответственно. Через вершины A, B и C проведены прямые, перпендикулярные прямым AM, BM, CM соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой MH.
В треугольнике ABC проведена биссектриса BD (точка D лежит на отрезке AC ). Прямая BD пересекает окружность Ω , описанную около треугольника ABC , в точках B и E . Окружность ω , построенная на отрезке DE как на диаметре, пересекает окружность Ω в точках E и F . Докажите, что прямая, симметричная прямой BF относительно прямой BD , содержит медиану треугольника ABC .
Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
На сторонах AB и BC параллелограмма ABCD выбраны точки A1 и C1 соответственно. Отрезки AC1 и CA1 пересекаются в точке P .
Описанные окружности треугольников AA1P и CC1P вторично пересекаются в точке Q , лежащей внутри треугольника ACD .
Докажите, что
В треугольнике ABC O, M, N – центр описанной окружности, центр тяжести и точка Нагеля соответственно.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке