ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||
Версия для печати
Убрать все задачи В ряду из 2009 гирек вес каждой гирьки составляет целое число граммов и не превышает 1 кг. Веса каждых двух соседних гирек отличаются ровно на 1 г, а общий вес всех гирь в граммах является чётным числом. Докажите, что гирьки можно разделить на две кучки, суммы весов в которых равны. Найдите все x, при которых уравнение x² + y² + z² + 2xyz = 1 (относительно z) имеет действительное решение при любом y. На плоскости лежат три трубы (круговые цилиндры одного размера в обхвате 4 м). Две из них лежат параллельно и, касаясь друг друга по общей образующей, образуют над плоскостью тоннель. Третья, перпендикулярная к первым двум, вырезает в тоннеле камеру. Найдите площадь границы этой камеры. Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO. Oколо четырёхугольника ABCD можно описать окружность. Точка P – основание перпендикуляра, опущенного из точки A на прямую BC, Q – из A на DC, R – из D на AB и T – из D на BC. Докажите, что точки P, Q, R и T лежат на одной окружности. Имеются две параллельные прямые p1 и p2.
Точки A и B лежат на p1, а C – на p2. Будем перемещать отрезок BC параллельно самому себе и рассмотрим все треугольники ABC, полученные таким образом. Найдите геометрическое место точек, являющихся в этих треугольниках: Дан треугольник АВС. Точка О1 – центр прямоугольника ВСDE, построенного так, что сторона DE прямоугольника содержит вершину А треугольника. Точки О2 и О3 являются центрами прямоугольников, построенных аналогичным образом на сторонах АС и АВ соответственно. Докажите, что прямые АО1, ВО2 и СО3 пересекаются в одной точке. В треугольнике ABC высоты или их продолжения пересекаются в точке H, а R – радиус его описанной окружности.
Последовательность a1, a2,..,a2000 действительных чисел такова, что для
любого натурального n , 1 Докажите, что все члены этой последовательности – целые числа. Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек). Дан такой выпуклый четырехугольник ABCD, что AB = BC и AD = DC. Точки K, L и M – середины отрезков AB, CD и AC соответственно. Перпендикуляр, проведенный из точки A к прямой BC, пересекается с перпендикуляром, проведенным из точки C к прямой AD, в точке H. Докажите, что прямые KL и HM перпендикулярны. Можно ли так раскрасить все клетки бесконечной клетчатой плоскости в белый и чёрный цвета, чтобы каждая вертикальная прямая и каждая горизонтальная прямая пересекали конечное число белых клеток, а каждая наклонная прямая конечное число чёрных? В остроугольном треугольнике ABC на высоте BK как на диаметре построена окружность S, пересекающая стороны AB и BC в точках E и F соответственно. К окружности S в точках E и F проведены касательные. Докажите, что их точка пересечения лежит на прямой, содержащей медиану треугольника ABC, проведённую из вершины B. У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных? Можно ли покрасить некоторые клетки доски 8×8 так, чтобы в любом квадрате 3×3 было ровно 5 закрашенных клеток, а в каждом прямоугольнике 2×4 (вертикальном или горизонтальном) – ровно 4 закрашенные клетки? |
Страница: 1 [Всего задач: 2]
Можно ли покрасить некоторые клетки доски 8×8 так, чтобы в любом квадрате 3×3 было ровно 5 закрашенных клеток, а в каждом прямоугольнике 2×4 (вертикальном или горизонтальном) – ровно 4 закрашенные клетки?
Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
Страница: 1 [Всего задач: 2]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке