Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Чеботарев А.С.

Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Женя не успел влезть в лифт на первом этаже дома и решил пойти по лестнице. На третий этаж он поднимается за 2 минуты. Сколько времени у него займет подъем до девятого этажа?

Вниз   Решение


Автор: Купцов Л.

Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.

ВверхВниз   Решение


  а) Сколькими способами Дима сможет покрасить пять ёлок в серебристый, зеленый и синий цвета, если количество краски у него неограничено, а каждую ёлку он красит только в один цвет?
  б) У Димы есть пять шариков: красный, зеленый, желтый, синий и золотой. Сколькими способами он сможет украсить ими пять ёлок, если на каждую требуется надеть ровно один шарик?
  в) А если можно надевать несколько шариков на одну ёлку (и все шарики должны быть использованы)?

ВверхВниз   Решение


Когда из бассейна сливают воду, уровень h воды в нём меняется в зависимости от времени t по закону

h(t)=at2+bt+c,

а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?

ВверхВниз   Решение


Автор: Карасев Р.

Докажите, что для любого натурального  n > 2  число     делится на 8.

ВверхВниз   Решение


Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n.

ВверхВниз   Решение


Дана бесконечная последовательность чисел  a1, a2, a3, ...  Известно, что для любого номера k можно указать такое натуральное число t, что
ak = ak+t = ak+2t = ...  Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное T, что  ak = ak+T  при любом натуральном k?

ВверхВниз   Решение


Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов.

ВверхВниз   Решение


Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.).

Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?

ВверхВниз   Решение


Можно ли разрезать квадратный пирог на 9 равновеликих частей таким способом: выбрать внутри квадрата две точки и соединить каждую из них прямолинейными разрезами со всеми четырьмя вершинами квадрата? Если можно, то какие две точки нужно выбрать?

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
  а) При каком положении точки X длина отрезка MN будет наименьшей?
  б) При каком положении точки X площадь четырёхугольника CMXN будет наибольшей?

ВверхВниз   Решение


Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.

ВверхВниз   Решение


Дана окружность с центром O и радиусом 1. Из точки A к ней проведены касательные AB и AC. Точка M, лежащая на окружности, такова, что четырёхугольники OBMC и ABMC имеют равные площади. Найдите MA.

ВверхВниз   Решение


Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно).

ВверхВниз   Решение


2003 доллара разложили по кошелькам, а кошельки разложили по карманам. Известно, что всего кошельков больше, чем долларов в любом кармане. Верно ли, что карманов больше, чем долларов в каком-нибудь кошельке? (Класть кошельки один в другой не разрешается.)

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 10]      



Задача 103888

Темы:   [ Наглядная геометрия в пространстве ]
[ Перебор случаев ]
Сложность: 2
Классы: 6,7

Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.

Прислать комментарий     Решение


Задача 103873

Тема:   [ Математическая логика (прочее) ]
Сложность: 3-
Классы: 6,7

Илье Муромцу, Добрыне Никитичу и Алёше Поповичу за верную службу дали 6 монет: 3 золотых и 3 серебряных. Каждому досталось по две монеты. Илья Муромец не знает, какие монеты достались Добрыне, а какие Алёше, но знает, какие монеты достались ему самому. Придумайте вопрос, на который Илья Муромец ответит ''да'', ''нет'' или ''не знаю'', и по ответу на который Вы сможете понять, какие монеты ему достались.

Прислать комментарий     Решение


Задача 98604

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

2003 доллара разложили по кошелькам, а кошельки разложили по карманам. Известно, что всего кошельков больше, чем долларов в любом кармане. Верно ли, что карманов больше, чем долларов в каком-нибудь кошельке? (Класть кошельки один в другой не разрешается.)

Прислать комментарий     Решение

Задача 105152

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

В магазине три этажа, перемещаться между которыми можно только на лифте. Исследование посещаемости этажей магазина показало, что с начала рабочего дня и до закрытия магазина:
  1) из покупателей, входящих в лифт на втором этаже, половина едет на первый этаж, а половина – на третий;
  2) среди покупателей, выходящих из лифта, меньше трети делает это на третьем этаже.
На какой этаж покупатели чаще ездили с первого этажа, на второй или на третий?

Прислать комментарий     Решение

Задача 111908

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теория алгоритмов (прочее) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 8,9,10

В каждой клетке квадрата 101×101, кроме центральной, стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает извне в произвольную клетку на границе квадрата, после чего ездит параллельно сторонам клеток, придерживаясь двух правил:
  1) в клетке со знаком "прямо" она продолжает путь в том же направлении;
  2) в клетке со знаком "поворот" она поворачивает на 90° (в любую сторону по своему выбору).
Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .