Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Ивлев Ф.

Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Точка M – середина стороны AC треугольника ABC. На отрезках AM и CM выбраны точки P и Q соответственно таким образом, что  PQ = AC/2.  Описанная окружность треугольника ABQ второй раз пересекает сторону BC в точке X, а описанная окружность треугольника BCP, второй раз пересекает сторону AB в точке Y. Докажите, что четырёхугольник BXMY – вписанный.

Вниз   Решение


Автор: Ивлев Ф.

Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?

ВверхВниз   Решение


Автор: Фомин С.В.

Даны 1000 линейных функций:  fk(x) = pkx + qk  (k = 1, 2, ..., 1000).  Нужно найти значение их композиции  f(x) = f1(f2(f3(...f1000(x)...)))  в точке x0. Докажите, что это можно сделать не более чем за 30 стадий, если на каждой стадии можно параллельно выполнять любое число арифметических операций над парами чисел, полученных на предыдущих стадиях, а на первой стадии используются числа  p1, p2, ..., p1000q1, q2, ..., q1000,  x0.

ВверхВниз   Решение


Автор: Нилов Ф.

Дан треугольник ABC,  O – центр его описанной окружности. Проекции точек D и X на стороны треугольника лежат на прямых l и L, причём
l || XO.  Докажите, что прямая L образует равные углы с прямыми AB и CD.

ВверхВниз   Решение


Автор: Ивлев Ф.

Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 66246

Темы:   [ Вписанные и описанные окружности ]
[ Точка Лемуана ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Радикальная ось ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть AL и AK – внутренняя и внешняя биссектрисы треугольника ABC,  P – точка пересечения касательных к описанной окружности в точках B и C. Перпендикуляр, восставленный из точки L к BC, пересекает прямую AP в точке Q. Докажите, что Q лежит на средней линии треугольника LKP.

Прислать комментарий     Решение

Задача 116777

Темы:   [ Теория игр (прочее) ]
[ Правильные многоугольники ]
Сложность: 4+
Классы: 10,11

Автор: Ивлев Ф.

На окружности отмечено 2n + 1  точек, делящих её на равные дуги  (n ≥ 2).  Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?

Прислать комментарий     Решение

Задача 66679

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Теоремы Чевы и Менелая ]
[ Общая касательная к двум окружностям ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Ивлев Ф.

Дан описанный четырёхугольник $ABCD$. Докажите, что точка пересечения диагоналей, центр вписанной окружности треугольника $ABC$ и центр вневписанной окружности треугольника $CDA$, касающейся стороны $AC$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 65021

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства симметрий и осей симметрии ]
[ Проективная геометрия (прочее) ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Вписанная окружность остроугольного треугольника ABC касается его сторон AB, BC, CA в точках C1, A1, B1 соответственно. Пусть A2, B2 – середины отрезков B1C1, A1C1 соответственно, O – центр описанной окружности треугольника ABC, P – одна из точек пересечения прямой CO с вписанной окружностью. Прямые PA2 и PB2 вторично пересекают вписанную окружность в точках A' и B'. Докажите, что прямые AA' и BB' пересекаются на высоте треугольника, опущенной на AB.

Прислать комментарий     Решение

Задача 66926

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .