Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Пастор А.

Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.

Вниз   Решение


В треугольнике $ABC$ точка $M$ – середина стороны $BC$, точка $E$ лежит внутри стороны $AC$,  $BE \geqslant 2AM$.  Докажите, что треугольник $ABC$ тупоугольный.

ВверхВниз   Решение


В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

ВверхВниз   Решение


Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется
  а) четыре,
  б) пять
таких, в которые можно вписать окружность?

ВверхВниз   Решение


Пусть P и Q – середины сторон AB и CD четырёхугольника ABCD, M и N – середины диагоналей AC и BD.
Докажите, что если MN и PQ перпендикулярны, то  BC = AD.

ВверхВниз   Решение


Автор: Купцов Л.

Два треугольника A1B1C1 и A2B2C2, площади которых равны соответственно S1 и S2, расположены так, что лучи A1B1 и A2B2, B1C1 и B2C2, C1A1 и C2A2 противоположно направлены. Найдите площадь треугольника с вершинами в серединах отрезков A1A2, B1B2, C1C2.

ВверхВниз   Решение


Автор: Пастор А.

Внутри вписанного четырёхугольника ABCD отмечены такие точки P и Q, что  ∠PDC + ∠PCB = ∠PAB + ∠PBC = ∠QCD + ∠QDA = ∠QBA + ∠QAD = 90°.
Докажите, что прямая PQ образует равные углы с прямыми AD и BC.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 5]      



Задача 108888

Темы:   [ Угол между касательной и хордой ]
[ Медиана, проведенная к гипотенузе ]
[ Вневписанные окружности ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

Автор: Пастор А.

Окружность, построенная на стороне AC остроугольного треугольника ABC как на диаметре, пересекает стороны AB и BC в точках K и L. Касательные к этой окружности, проведённые в точках K и L, пересекаются в точке M. Докажите, что прямая BM перпендикулярна AC.

Прислать комментарий     Решение

Задача 64354

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Симметрия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

Внутри вписанного четырёхугольника ABCD отмечены такие точки P и Q, что  ∠PDC + ∠PCB = ∠PAB + ∠PBC = ∠QCD + ∠QDA = ∠QBA + ∠QAD = 90°.
Докажите, что прямая PQ образует равные углы с прямыми AD и BC.

Прислать комментарий     Решение

Задача 109755

Темы:   [ Ориентированные графы ]
[ Вспомогательная раскраска (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

В городе несколько площадей. Некоторые пары площадей соединены улицами с односторонним движением так, что с каждой площади можно выехать ровно по двум улицам. Докажите, что город можно разделить на 1014 районов так, чтобы улицами соединялись только площади из разных районов, и для каждых двух районов все соединяющие их улицы были направлены одинаково (либо все из первого района во второй, либо наоборот).

Прислать комментарий     Решение

Задача 109762

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Пастор А.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

Прислать комментарий     Решение

Задача 110200

Темы:   [ Ориентированные графы ]
[ Связность и разложение на связные компоненты ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

В некотором государстве было 2004 города, соединённых дорогами так, что из каждого города можно было добраться до любого другого. Известно, что при запрещённом проезде по любой из дорог по-прежнему из каждого города можно было добраться до любого другого. Министр транспорта и министр внутренних дел по очереди вводят на дорогах, пока есть возможность, одностороннее движение (на одной дороге за ход), причём министр, после хода которого из какого-либо города стало невозможно добраться до какого-либо другого, немедленно уходит в отставку. Первым ходит министр транспорта.
Может ли кто-либо из министров добиться отставки другого независимо от его игры?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .