|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что если выпуклая фигура Найдите среднюю линию равнобокой трапеции, если ее диагональ равна 25, а высота равна 15. |
Страница: << 1 2 3 4 >> [Всего задач: 16]
Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC, γ = ∠C. Докажите, что c ≥ (a + b) sin γ/2.
Можно ли отметить на числовой оси 50 отрезков (быть может, перекрывающихся) так, что их длины – 1, 2, 3, ... , 50, а их концы – все целые точки от 1 до 100 включительно?
Стороны треугольника равны 3, 4 и 5. Биссектрисы внешних углов треугольника
продолжены до пересечения с продолжениями сторон.
[
Можно ли подобрать два многочлена P(x) и Q(x) с целыми коэффициентами так, что P – Q, P и P + Q – квадраты некоторых многочленов (причём Q не получается умножением P на число)?
Страница: << 1 2 3 4 >> [Всего задач: 16] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|