Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Произволов В.В.

Вячеслав Викторович Произволов (род. в 1939) - математик, к.ф-м.н., автор книги "Задачи на вырост"

Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Володя бежит по круговой дистанции с постоянной скоростью. В двух точках дистанции стоит по фотографу. После старта Володя 2 минуты был ближе к первому фотографу, затем 3 минуты – ближе ко второму фотографу, а потом снова ближе к первому. За какое время Володя пробежал весь круг?

Вниз   Решение


Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что  A1H = C1H.

ВверхВниз   Решение


Треугольники ABC1 и ABC2 имеют общее основание AB и  $ \angle$AC1B = $ \angle$AC2B. Докажите, что если | AC1 - C1B| < | AC2 - C2B|, то:
а) площадь треугольника ABC1 больше площади треугольника ABC2;
б) периметр треугольника ABC1 больше периметра треугольника ABC2.

ВверхВниз   Решение


Дан квадрат со стороной 1. От него отсекают четыре уголка — четыре треугольника, у каждого из которых две стороны идут по сторонам квадрата и составляют 1/3 их длины. С полученным 8-угольником делают то же самое: от каждой вершины отрезают треугольник, две стороны которого составляют по 1/3 соответствующих сторон 8-угольника, и так далее. Получается последовательность многоугольников (каждый содержится в предыдущем). Найдите площадь фигуры, являющейся пересечением всех этих многоугольников (то есть образованной точками, принадлежащими всем многоугольникам).

ВверхВниз   Решение


В остроугольном треугольнике ABC провели высоты AA1 и BB1, которые пересекаются в точке O. Затем провели высоту A1A2 треугольника OBA1 и высоту B1B2 треугольника OAB1. Докажите, что отрезок A2B2 параллелен стороне AB.

ВверхВниз   Решение


Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.

ВверхВниз   Решение


При каких  n > 3  правильный n-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

ВверхВниз   Решение


Почтальон Печкин не хотел отдавать посылку. Тогда Матроскин предложил ему сыграть в следующую игру: каждым ходом Печкин пишет в строку слева направо буквы, произвольно чередуя М и П, пока в строке не будет всего 11 букв. Матроскин после каждого его хода, если хочет, меняет местами любые две буквы. Если в итоге окажется, что записанное слово является палиндромом (то есть одинаково читается слева направо и справо налево), то Печкин отдаёт посылку. Сможет ли Матроскин играть так, чтобы обязательно получить посылку?

ВверхВниз   Решение


В четырёхугольнике ABCD стороны AD и BC параллельны.
Докажите, что если биссектрисы углов DAC, DBC, ACB и ADB образовали ромб, то  AB = CD.

ВверхВниз   Решение


Автор: Петров Ф.

Цифры натурального числа  $n$ > 1  записали в обратном порядке и результат умножили на $n$. Могло ли получиться число, записываемое только единицами?

ВверхВниз   Решение


Незнайка решал уравнение, в левой части которого стоял многочлен третьей степени с целыми коэффициентами, а в правой – 0. Он нашёл корень 1/7. Знайка, заглянув к нему в тетрадь, увидел только первые два слагаемых многочлена:  19x³ + 98x²  и сразу сказал, что ответ неверен. Обоснуйте ответ Знайки.

ВверхВниз   Решение


ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что  AB = 2AD. Точки M и N на стороне AC таковы, что  AM = NC.  На продолжении стороны CB за точку B взята такая точка K, что  CN = BK.  Найдите угол между прямыми NK и DM.

ВверхВниз   Решение


а) Даны две точки A, B и прямая l. Постройте окружность, проходящую через точки A, B и касающуюся прямой l.
б) Даны две точки A и B и окружность S. Постройте окружность, проходящую через точки A и B и касающуюся окружности S.

ВверхВниз   Решение


Петя выбрал несколько последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел являться степенью двойки?

ВверхВниз   Решение


В треугольнике ABC провели биссектрису CL. В треугольники CAL и CBL вписали окружности, которые касаются прямой AB в точках M и N соответственно. Затем все, кроме точек A, L, M и N, стерли. С помощью циркуля и линейки восстановите треугольник.

ВверхВниз   Решение


Докажите, что из шести ребер тетраэдра можно сложить два треугольника.

Вверх   Решение

Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 87]      



Задача 116268

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Принцип крайнего (прочее) ]
[ Две пары подобных треугольников ]
Сложность: 3
Классы: 8,9,10,11

Грани выпуклого многогранника – подобные треугольники.
Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).

Прислать комментарий     Решение

Задача 116386

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На стороне AB треугольника ABC взята такая точка P, что  AP = 2PB,  а на стороне AC – ее середина, точка Q. Известно, что  CP = 2PQ.
Докажите, что треугольник ABC прямоугольный.

Прислать комментарий     Решение

Задача 116712

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Комбинаторная геометрия (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.

Прислать комментарий     Решение

Задача 98239

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Остовы многогранных фигур ]
[ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что из шести ребер тетраэдра можно сложить два треугольника.

Прислать комментарий     Решение

Задача 98307

Темы:   [ Параллельность прямых и плоскостей ]
[ Уравнение плоскости ]
[ Куб ]
[ Скалярное произведение ]
[ Двоичная система счисления ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .