Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Сендеров В.А.

Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант.

Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Два автобуса ехали навстречу друг другу с постоянными скоростями. Первый выехал из Москвы в 11 часов утра и прибыл в Ярославль в 16 часов, а второй выехал из Ярославля в 12 часов и прибыл в Москву в 17 часов. В котором часу они встретились?

Вниз   Решение


Известно, что  1/a1/b = 1/a+b.  Докажите, что  1/a²1/b² = 1/ab.

ВверхВниз   Решение


Автор: Жуков Г.

У менялы на базаре есть много ковров. Он согласен взамен ковра размера a×b дать либо ковёр размера 1/a×1/b, либо два ковра размеров c×b и  a/c×b  (при каждом таком обмене число c клиент может выбрать сам). Путешественник рассказал, что изначально у него был один ковёр, стороны которого превосходили 1, а после нескольких таких обменов у него оказался набор ковров, у каждого из которых одна сторона длиннее 1, а другая – короче 1. Не обманывает ли он? (По просьбе клиента меняла готов ковёр размера a×b считать ковром размера b×a.)

ВверхВниз   Решение


В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?

ВверхВниз   Решение


Барон Мюнхгаузен утверждает, что к любому двузначному числу можно справа приписать еще две цифры так, чтобы получился полный квадрат (к примеру, если задано число $10$, то дописываем $24$ и получаем $1024 = 32^2$). Прав ли барон?

ВверхВниз   Решение


Прямая, параллельная стороне BC треугольника ABC, пересекает стороны AB и AC в точках P и Q соответственно. Внутри треугольника APQ взята точка M. Отрезки MB и MC пересекают отрезок PQ в точках E и F соответственно. Пусть N – вторая точка пересечения описанных окружностей ω1 и ω2 треугольников PMF и QME. Докажите, что точки A, M и N лежат на одной прямой.

ВверхВниз   Решение


Можно ли произвольный ромб разрезать не более, чем на две части так, чтобы из этих частей сложить прямоугольник?

ВверхВниз   Решение


Дан треугольник ABC. Две окружности, проходящие через вершину A, касаются стороны BC в точках B и C соответственно. Пусть D – вторая точка пересечения этих окружностей (A лежит ближе к BC, чем D). Известно, что  BC = 2BD.  Докажите, что  ∠DAB = 2∠ADB.

ВверхВниз   Решение


Автор: Фольклор

Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$.

ВверхВниз   Решение


  По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему).

  Войдя на станцию, Учёный садится в первый же подошедший поезд. Известно, что в обоих направлениях поезда ходят с примерно равными интервалами, причём по северному маршруту (через "Белорусскую") поезд идёт от "Киевской" до "Таганской" или обратно 17 минут, а по южному маршруту (через "Павелецкую") – 11 минут.   По давней привычке Учёный всё всегда подсчитывает. Однажды он подсчитал, что по многолетним наблюдениям:
  - поезд, идущий против часовой стрелки, приходит на "Киевскую" в среднем через 1 минуту 15 секунд после того, как на неё приходит поезд, идущий по часовой стрелке. То же верно и для "Таганской".
  - на поездку из дома на работу Учёный в среднем тратит на 1 минуту меньше, чем на поездку с работы домой.
  Найдите математическое ожидание интервала между поездами, идущими в одном направлении.

ВверхВниз   Решение


Таня вырезала из бумаги выпуклый многоугольник и несколько раз его согнула так, что получился двухслойный четырёхугольник.
Мог ли вырезанный многоугольник быть семиугольником?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



Задача 98263

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 
Прислать комментарий     Решение

Задача 98282

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8

а) Существуют ли четыре таких различных натуральных числа, что сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма каждых трёх из них есть простое число?

Прислать комментарий     Решение

Задача 98445

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Признаки делимости на 3 и 9 ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Рассматриваются тройки целых чисел a, b и c, для которых выполнено условие:  a + b + c = 0.  Для каждой такой тройки вычисляется число
d = a1999 + b1999 + c1999.   Может ли случиться, что
  а)  d = 2?
  б) d – простое число?

Прислать комментарий     Решение

Задача 98450

Темы:   [ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Докажите, что существует бесконечно много нечётных n, для которых число  2n + n  – составное.

Прислать комментарий     Решение

Задача 98497

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

Натуральные числа a, b, c, d таковы, что наименьшее общее кратное этих чисел равно  a + b + c + d.
Докажите, что abcd делится на 3 или на 5 (или на то и другое).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .