ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике ABCD равны углы при вершинах A и B . Известно также, что BC=1 и AD=3 . Докажите, что CD>2 . Каждая сторона треугольника больше 100. Может ли его площадь быть меньше 0,01? Диагонали выпуклого четырёхугольника ABCD пересекаются в точке M . Пусть P и Q — центры окружностей, описанных вокруг треугольников ABM и CDM . Докажите, что AB+CD < 4PQ Дан выпуклый шестиугольник ABCDEF. Известно, что ∠FAE = ∠BDC, а четырёхугольники ABDF и ACDE являются вписанными. |
Страница: << 1 2 3 >> [Всего задач: 12]
Точки M и N – середины сторон AB и CD соответственно четырёхугольника ABCD. Известно, что BC || AD и AN = CM.
Два квадрата расположены, как показано на рисунке. Докажите, что площадь чёрного треугольника равна сумме площадей серых.
Какое наибольшее количество граней n-угольной пирамиды может быть перпендикулярно основанию?
Вокруг треугольника ABC с острым углом C описана окружность. На дуге AB, не содержащей точку C, выбрана точка D. Точка D' симметрична точке D относительно прямой AB. Прямые AD' и BD' пересекают стороны BC и AC в точках E и F. Пусть точка C движется по своей дуге AB. Докажите, что центр описанной окружности треугольника CEF движется по прямой.
На плоскости даны неравнобедренный треугольник, его описанная окружность, и отмечен центр его вписанной окружности.
Страница: << 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке