ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дан треугольник ABC. Постройте две прямые x и y так, чтобы для любой точки M на стороне AC сумма длин отрезков MXM и MYM, проведенных из точки M параллельно прямым x и y до пересечения со сторонами AB и BC треугольника, равнялась 1.

Вниз   Решение


Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 69]      



Задача 56786  (#04.035)

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ Отношение площадей подобных треугольников ]
Сложность: 4
Классы: 8,9,10

Отрезок MN, параллельный стороне CD четырехугольника ABCD, делит его площадь пополам (точки M и N лежат на сторонах BC и AD). Длины отрезков, проведенных из точек A и B параллельно CD до пересечения с прямыми BC и AD, равны a и b. Докажите, что  MN2 = (ab + c2)/2, где c = CD.
Прислать комментарий     Решение


Задача 56787  (#04.036)

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Неравенства с площадями ]
Сложность: 4
Классы: 8,9,10

Каждая из трех прямых делит площадь фигуры пополам. Докажите, что часть фигуры, заключенная внутри треугольника, образованного этими прямыми, имеет площадь, не превосходящую 1/4 площади всей фигуры.
Прислать комментарий     Решение


Задача 56788  (#04.037)

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Неравенства с площадями ]
[ Площадь трапеции ]
[ Ортогональная (прямоугольная) проекция ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 5-
Классы: 8,9,10

Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем  1 + .

Прислать комментарий     Решение

Задача 56789  (#04.038)

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Соображения непрерывности ]
[ Поворот помогает решить задачу ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 5-
Классы: 9,10,11

Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.

Прислать комментарий     Решение

Задача 56790  (#04.039)

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Вписанные и описанные многоугольники ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Периметр треугольника ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 9,10,11

Автор: Ионин Ю.И.

а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
б) Докажите аналогичное утверждение для любого описанного многоугольника.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .