|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах? Даны точка A и окружность S. Проведите через точку A прямую так, чтобы хорда, высекаемая окружностью S на этой прямой, имела данную длину d. Набор чисел a, b, c каждую секунду заменяется на a + b − c, b + c − a, c + a − b. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
Доказать, что при нечётном n > 1 уравнение xn + yn = zn не может иметь решений в целых числах, для которых x + y – простое число.
Доказать, что не существует попарно различных натуральных чисел x, y, z, t, для которых было бы справедливо соотношение xx + yy = zz + tt.
Лист клетчатой бумаги размером 5×n заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|