ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 40]      



Задача 98151

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
[ Аналитический метод в геометрии ]
[ Трапеции (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Дан угол с вершиной O и внутри него точка A. Рассмотрим такие точки M, N на разных сторонах данного угла, что углы MAO и OAN равны.
Докажите, что все прямые MN проходят через одну точку (или параллельны).

Прислать комментарий     Решение

Задача 98160

Темы:   [ Теория алгоритмов (прочее) ]
[ Таблицы и турниры (прочее) ]
[ Разложение в произведение транспозиций и циклов ]
Сложность: 4+
Классы: 8,9,10

Автор: Анджанс А.

В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.

Прислать комментарий     Решение

Задача 98184

Темы:   [ Сочетания и размещения ]
[ Подсчет двумя способами ]
[ Неравенство Коши ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 5-
Классы: 8,9,10

В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются непохожими, если они различаются не менее, чем по 51 признаку.
  а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
  б) А может ли быть ровно 50?

Прислать комментарий     Решение

Задача 98162

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Свойства сечений ]
[ Монотонность, ограниченность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5+
Классы: 10,11

Автор: Анджанс А.

Число рёбер многогранника равно 100.
  а) Какое наибольшее число рёбер может пересечь плоскость, не проходящая через его вершины, если многогранник выпуклый?
  б) Докажите, что для невыпуклого многогранника это число может равняться 96,
  в) но не может равняться 100.

Прислать комментарий     Решение

Задача 98172

Темы:   [ Экстремальные свойства окружности и криволинейных фигур ]
[ Вспомогательная раскраска (прочее) ]
[ Задачи на движение ]
[ Связность. Связные множества ]
Сложность: 5+
Классы: 8,9,10

Ширина реки один километр. Это по определению означает, что от любой точки каждого берега можно доплыть до противоположного берега, проплыв не больше километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до любого из берегов было бы не больше:
  а) 700 м?
  б) 800 м?
(Берега состоят из отрезков и дуг окружностей.)

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .