Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]
Задача
109533
(#93.4.11.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
На доске написано: x³ + ...x² + ...x + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?
Задача
109534
(#93.4.11.6)
|
|
Сложность: 5 Классы: 10,11
|
Семь треугольных пирамид стоят на столе. Для любых трех из них существует горизонтальная плоскость,
которая пересекает их по треугольникам равной площади. Доказать, что существует плоскость,
пересекающая все семь пирамид по треугольникам равной площади.
Задача
108233
(#93.4.11.7)
|
|
Сложность: 5+ Классы: 8,9
|
Дан правильный треугольник
ABC . Через вершину
B
проводится произвольная прямая
l , а через точки
A
и
C проводятся прямые, перпендикулярные прямой
l ,
пересекающие её в точках
D и
E . Затем, если точки
D и
E различны, строятся правильные треугольники
DEP и
DET , лежащие по разные стороны от прямой
l .
Найдите геометрическое место точек
P и
T .
Задача
109536
(#93.4.11.8)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.
Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)
Задача
109521
(#93.5.9.1)
|
|
Сложность: 3 Классы: 7,8,9
|
Натуральное число n таково, что числа 2n + 1 и 3n + 1 являются квадратами. Может ли при этом число 5n + 3 быть простым?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]