ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]
Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.
Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (P(x))n, n > 1, положительны?
Внутри квадрата ABCD лежит квадрат PQRS. Отрезки AP, BQ, CR и DS не пересекают друг друга и стороны квадрата PQRS.
Из точки O, лежащей внутри выпуклого n-угольника A1A2...An, проведены отрезки ко всем вершинам: OA1, OA2, ..., OAn . Оказалось, что все углы между этими отрезками и прилегающими к ним сторонами n-угольника – острые, причём
∠OA1An ≤ ∠OA1A2, ∠OA2A1 ≤ ∠OA2A3, ...,
Выпуклый 1993-угольник разрезан на выпуклые семиугольники.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке