Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 2- Классы: 7,8,9
|
Решите уравнение:
|
|
Сложность: 3 Классы: 7,8,9
|
Один из углов треугольника на 120° больше другого.
Докажите, что биссектриса треугольника, проведённая из вершины третьего угла, вдвое длиннее, чем высота, проведённая из той же вершины.
|
|
Сложность: 3 Классы: 8,9,10
|
Сравните без помощи калькулятора числа: .
|
|
Сложность: 3+ Классы: 7,8,9,10
|
20 шахматистов сыграли турнир в один круг. Корреспондент "Спортивной газеты" написал в своей заметке, что каждый участник этого турнира выиграл столько же партий, сколько и свёл вничью. Докажите, что корреспондент ошибся.
|
|
Сложность: 3+ Классы: 8,9,10
|
Гриша едет по маршруту длиной 100 км. В его автомобиле имеется компьютер, дающий прогноз времени, оставшегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автомобиля на оставшемся участке пути будет такой же, как и на уже пройденном.
Сразу же после старта компьютер показал "2 часа" и всё дальнейшее время показывал именно это число (компьютер исправен). Найдите x(t) – зависимость пути, который проехал Гриша, от времени с момента старта. Постройте график этой зависимости.
Страница: 1
2 >> [Всего задач: 6]