Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность S3
и т. д. Докажите, что окружность S7 совпадает с S1.

Вниз   Решение


Квадратное поле разбито на 100 одинаковых участков, 9 из которых поросли бурьяном. Известно, что бурьян за год распространяется на те и только те участки, у каждого из которых не менее двух соседних участков уже поражены бурьяном (участки соседние, если они имеют общую сторону). Докажите, что полностью все поле бурьяном не зарастёт.

ВверхВниз   Решение


Автор: Смирнов А.

Натуральные числа от 1 до 100 расставлены по кругу в таком порядке, что каждое число либо больше обоих соседей, либо меньше обоих соседей. Пара соседних чисел называется хорошей, если при выкидывании этой пары вышеописанное свойство сохраняется. Какое минимальное количество хороших пар может быть?

ВверхВниз   Решение


Автор: Шевцов А.

В треугольнике $ABC$ проведена медиана $AM$ и на ней выбрана точка $D$. Касательные, проведенные к описанной окружности треугольника $BDC$ в точках $B$ и $C$, пересекаются в точке $K$. Докажите, что $DD'$ параллельно $AK$, где $D'$ – точка, изогонально сопряжённая точке $D$ относительно треугольника $ABC$.

ВверхВниз   Решение


Дан вписанный четырёхугольник $ABCD$. Произвольная окружность, проходящая через точки $C$ и $D$, пересекает прямые $AC$, $BC$ в точках $X$, $Y$ соответственно. Найдите ГМТ пересечения окружностей $CAY$ и $CBX$.

ВверхВниз   Решение


Автор: Гарбер М.

На столе лежат 365 карточек, на обратной стороне которых написаны различные числа. За один рубль Вася может выбрать три карточки и попросить Петю положить их слева направо так, чтобы числа на карточках располагались в порядке возрастания. Может ли Вася, потратив 2000 рублей, с гарантией выложить все 365 карточек на стол слева направо так, чтобы числа на них располагались в порядке возрастания?

ВверхВниз   Решение


У Коли есть отрезок длины k, а у Лёвы — отрезок длины l. Сначала Коля делит свой отрезок на три части, а потом Лёва делит на три части свой отрезок. Если из получившихся шести отрезков можно сложить два треугольника, то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от отношения k/l, может обеспечить себе победу, и как ему следует играть?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 107761

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Обратный ход ]
[ Уравнения с модулями ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

Прислать комментарий     Решение

Задача 107763

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9,10

D – точка на стороне BC треугольника ABC. B треугольники ABD, ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от BC), пересекающая AD в точке K. Докажите, что длина отрезка AK не зависит от положения точки D на BC.

Прислать комментарий     Решение

Задача 108197

Темы:   [ Биссектриса угла (ГМТ) ]
[ Средняя линия треугольника ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC провели биссектрисы углов A и C. Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.

Прислать комментарий     Решение

Задача 107755

Темы:   [ Неравенство треугольника (прочее) ]
[ Теория игр (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 7,8,9

У Коли есть отрезок длины k, а у Лёвы — отрезок длины l. Сначала Коля делит свой отрезок на три части, а потом Лёва делит на три части свой отрезок. Если из получившихся шести отрезков можно сложить два треугольника, то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от отношения k/l, может обеспечить себе победу, и как ему следует играть?
Прислать комментарий     Решение


Задача 107766

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Усеченная пирамида ]
[ Многогранники и многоугольники (прочее) ]
Сложность: 3+
Классы: 10,11

Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .