ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске написано: x³ + ...x² + ...x + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать? Произведение положительных чисел x, y и z равно 1. Дан куб со стороной 4. Можно ли целиком оклеить три его грани, имеющие общую вершину, 16 бумажными прямоугольными полосками размером 1×3? Клетки квадрата 50×50 раскрашены в четыре цвета. Докажите, что существует клетка, с четырех сторон от которой (т.е. сверху, снизу, слева и справа) имеются клетки одного с ней цвета (не обязательно соседние с этой клеткой). Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности. В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали. Докажите, что уравнение x³ + y³ = 4(x²y + xy² + 1) не имеет решений в целых числах. а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей? б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно? В коробке лежит полный набор костей домино. Два игрока по очереди выбирают из коробки по одной кости и выкладывают их на стол, прикладывая к уже выложенной цепочке с любой из двух сторон по правилам домино. Проигрывает тот, кто не может сделать очередной ход. Кто выиграет при правильной игре? Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ да надо заплатить 2 рубля, за ответ нет – 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число? Докажите, что Дан правильный треугольник ABC . Через вершину B проводится произвольная прямая l , а через точки A и C проводятся прямые, перпендикулярные прямой l , пересекающие её в точках D и E . Затем, если точки D и E различны, строятся правильные треугольники DEP и DET , лежащие по разные стороны от прямой l . Найдите геометрическое место точек P и T . |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]
На доске написано: x³ + ...x² + ...x + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?
Семь треугольных пирамид стоят на столе. Для любых трех из них существует горизонтальная плоскость, которая пересекает их по треугольникам равной площади. Доказать, что существует плоскость, пересекающая все семь пирамид по треугольникам равной площади.
Дан правильный треугольник ABC . Через вершину B проводится произвольная прямая l , а через точки A и C проводятся прямые, перпендикулярные прямой l , пересекающие её в точках D и E . Затем, если точки D и E различны, строятся правильные треугольники DEP и DET , лежащие по разные стороны от прямой l . Найдите геометрическое место точек P и T .
В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.
Натуральное число n таково, что числа 2n + 1 и 3n + 1 являются квадратами. Может ли при этом число 5n + 3 быть простым?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке