|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Доказать, что любое натуральное число можно представить в виде суммы нескольких различных членов последовательности 1, 2, 3, 5, 8, 13, ..., an = an - 1 + an - 2,.... В колоде n карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз? |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
Докажите, что для любых действительных чисел a и b справедливо неравенство a² + ab + b² ≥ 3(a + b – 1).
Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.
На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно. Отрезки AN и CM пересекаются в точке O, причём AO = CO. Обязательно ли треугольник ABC равнобедренный, если а) AM = CN; б) BM = BN?
Докажите, что уравнение x³ + y³ = 4(x²y + xy² + 1) не имеет решений в целых числах.
Страница: 1 2 3 4 5 >> [Всего задач: 24] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|