ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть f(x)=x2+ax+b cos x . Найдите все значения параметров a и b , при которых уравнения f(x)=0 и f(f(x))=0 имеют совпадающие непустые множества действительных корней.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 109957  (#98.4.9.8)

Темы:   [ Инварианты ]
[ Метод координат на плоскости ]
[ Четность и нечетность ]
[ Процессы и операции ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4
Классы: 8,9,10,11

Автор: Храмцов Д.

Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?

Прислать комментарий     Решение

Задача 109942  (#98.4.10.1)

Темы:   [ Процессы и операции ]
[ Методы решения задач с параметром ]
[ Тригонометрические уравнения ]
Сложность: 4-
Классы: 9,10,11

Пусть f(x)=x2+ax+b cos x . Найдите все значения параметров a и b , при которых уравнения f(x)=0 и f(f(x))=0 имеют совпадающие непустые множества действительных корней.
Прислать комментарий     Решение


Задача 108105  (#98.4.10.2)

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Автор: Сонкин М.

В остроугольном треугольнике ABC через центр O описанной окружности и вершины B и C проведена окружность S. Пусть OK – диаметр окружности S, D и E – соответственно точки её пересечения с прямыми AB и AC. Докажите, что ADKE – параллелограмм.

Прислать комментарий     Решение

Задача 109944  (#98.4.10.3)

Темы:   [ Системы точек ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11

Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)
Прислать комментарий     Решение


Задача 109945  (#98.4.10.4)

Темы:   [ Теория игр (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 8,9,10

В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4, 21998 . Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .