ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что оба числа  a + b  и  an + bn  – целые?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 110210  (#06.4.10.5)

Темы:   [ Тригонометрические неравенства ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10,11

Докажите, что для каждого x такого, что sin x 0 , найдется такое натуральное n , что | sin nx| .
Прислать комментарий     Решение


Задача 110211  (#06.4.10.6)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Пересекающиеся окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Симметрия помогает решить задачу ]
[ Признаки подобия ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9,10

Через точку пересечения высот остроугольного треугольника ABC проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.

Прислать комментарий     Решение

Задача 110212  (#06.4.10.7)

Темы:   [ Разложение на множители ]
[ Рациональные и иррациональные числа ]
[ НОД и НОК. Взаимная простота ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 8,9,10

При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что оба числа  a + b  и  an + bn  – целые?
Прислать комментарий     Решение


Задача 110213  (#06.4.10.8)

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
Сложность: 6-
Классы: 10,11

Автор: Гарбер А.

У выпуклого многогранника 2n граней ( n 3 ), и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?
Прислать комментарий     Решение


Задача 110207  (#06.4.11.1)

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Натуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .