Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо. После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо. Сколько конфет после этого осталось?

Вниз   Решение


Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.

ВверхВниз   Решение


Поезду, в котором находится m пассажиров, предстоит сделать n остановок.
  а) Сколькими способами могут выйти пассажиры на этих остановках?
  б) Решите ту же задачу, если учитывается лишь количество пассажиров, вышедших на каждой остановке.

ВверхВниз   Решение


Известно, что каждое из целых чисел a, b, c, d делится на  ab – cd.  Докажите, что  ab – cd  равно либо 1, либо –1.

ВверхВниз   Решение


Решите уравнение  (x + 1)63 + (x + 1)62(x – 1) + (x + 1)61(x – 1)² + ... + (x – 1)63 = 0.

ВверхВниз   Решение


Для каждого простого p найдите наибольшую натуральную степень числа p!, на которую делится число (p²)!.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 111923  (#1)

Темы:   [ Производная и кратные корни ]
[ Производная и экстремумы ]
Сложность: 3
Классы: 10,11

Когда из бассейна сливают воду, уровень h воды в нём меняется в зависимости от времени t по закону

h(t)=at2+bt+c,

а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?
Прислать комментарий     Решение

Задача 111924  (#2)

Темы:   [ Цилиндр ]
[ Поверхность круглых тел ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 10,11

Моток ниток проткнули насквозь 72 цилиндрическими спицами радиуса 1 каждая, в результате чего он приобрел форму цилиндра радиуса 6. Могла ли высота этого цилиндра оказаться также равной 6?
Прислать комментарий     Решение


Задача 111925  (#3)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Производная и касательная ]
[ Построения с помощью вычислений ]
Сложность: 5-
Классы: 10,11

На плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции

y= sin x, x(0).

Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а) α() ; б) α(0;) ?
Прислать комментарий     Решение

Задача 111926  (#4)

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Свойства симметрий и осей симметрии ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Описанные четырехугольники ]
Сложность: 5-
Классы: 8,9,10

Через каждую вершину четырехугольника проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части.
a) Докажите, что и четвертая прямая обладает тем же свойством.
б) Какие значения могут принимать углы этого четырехугольника, если один из них равен 72o ?
Прислать комментарий     Решение


Задача 111927  (#5)

Темы:   [ Произведения и факториалы ]
[ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 9,10,11

Для каждого простого p найдите наибольшую натуральную степень числа p!, на которую делится число (p²)!.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .