ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Натуральное число n таково, что 3n + 1 и 10n + 1 являются квадратами натуральных чисел. Докажите, что число 29n + 11 – составное. Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число 1, 2, 3, ... можно было представить единственным способом в виде разности двух чисел этой последовательности? На прямых BC, CA и AB взяты точки A1, B1
и C1. Пусть P1 — произвольная точка прямой BC,
P2 — точка пересечения прямых P1B1 и AB, P3 — точка
пересечения прямых P2A1 и CA, P4 — точка
пересечения
P3C1 и BC и т. д. Докажите, что точки P7 и P1
совпадают.
Каждый из двух правильных многоугольников P и Q разрезали прямой на две части. Одну из частей P и одну из частей Q сложили друг с другом по линии разреза. Может ли получиться правильный многоугольник, не равный ни одному из исходных, и если да, то сколько у него может быть сторон? Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес
от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны. Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный. а) Укажите два прямоугольных треугольника, из
которых можно сложить треугольник, длины сторон и площадь
которого — целые числа.
Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника? Продолжения сторон AB и CD четырехугольника ABCD
пересекаются в точке P, а продолжения сторон BC и AD — в
точке Q. Через точку P проведена прямая, пересекающая стороны BC
и AD в точках E и F. Докажите, что точки пересечения диагоналей
четырехугольников
ABCD, ABEF и CDFE лежат на прямой, проходящей
через точку Q.
Три прямые проходят через точку O и образуют попарно равные углы. На одной из них взяты точки A1, A2, на другой – B1, B2, так что точка C1 пересечения прямых A1B1 и A2B2 лежит на третьей прямой. Пусть C2 – точка пересечения A1B2 и A2B1. Докажите, что угол C1OC2 прямой. |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Три прямые проходят через точку O и образуют попарно равные углы. На одной из них взяты точки A1, A2, на другой – B1, B2, так что точка C1 пересечения прямых A1B1 и A2B2 лежит на третьей прямой. Пусть C2 – точка пересечения A1B2 и A2B1. Докажите, что угол C1OC2 прямой.
Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности Ω. Пусть A1, B1, C1 – проекции X на BC, CA, AB, а A2, B2, C2 – проекции Y. Докажите, что перпендикуляры, опущенные из A1, B1, C1 на, соответственно, B2C2, C2A2, A2B2, пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр Ω.
На плоскости даны три параллельные прямые.
Дан выпуклый n-угольник A1...An. Пусть Pi (i = 1, ..., n) – такая точка на его границе, что прямая AiPi делит его площадь пополам. Известно, что все точки Pi не совпадают с вершинами и лежат на k сторонах n-угольника. Каково а) наименьшее; б) наибольшее возможное значение k при каждом данном n?
В остроугольном треугольнике ABC точка H – ортоцентр, O – центр описанной окружности, AA1, BB1 и CC1 – высоты. Точка C2 симметрична C относительно A1B1. Докажите, что H, O, C1 и C2 лежат на одной окружности.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке