Страница: 1
2 >> [Всего задач: 8]
Задача
116903
(#9.1)
|
|
Сложность: 3 Классы: 8,9,10
|
В остроугольном треугольнике ABC провели высоты AA1 и BB1, которые пересекаются в точке O. Затем провели высоту A1A2 треугольника OBA1 и высоту B1B2 треугольника OAB1. Докажите, что отрезок A2B2 параллелен стороне AB.
Задача
116904
(#9.2)
|
|
Сложность: 4 Классы: 8,9,10
|
Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.
Задача
116905
(#9.3)
|
|
Сложность: 4 Классы: 8,9,10
|
В треугольнике ABC провели биссектрису CL. В треугольники CAL и CBL вписали окружности, которые касаются прямой AB в точках M и N соответственно. Затем все, кроме точек A, L, M и N, стерли. С помощью циркуля и линейки восстановите треугольник.
Задача
116906
(#9.4)
|
|
Сложность: 4+ Классы: 8,9,10
|
При каких n > 3 правильный n-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?
Задача
116907
(#9.5)
|
|
Сложность: 3+ Классы: 8,9,10
|
ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что AB = 2AD. Точки M и N на стороне AC таковы, что AM = NC. На продолжении стороны CB за точку B взята такая точка K, что CN = BK. Найдите угол между прямыми NK и DM.
Страница: 1
2 >> [Всего задач: 8]