ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
год/номер:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан угол с вершиной A. От точки A отложен на стороне отрезок AB; из точки B проведена прямая, параллельная второй стороне данного угла; на этой прямой отложен внутри угла отрезок BD, равный BA. Докажите, что прямая AD делит данный угол пополам. Высоты равнобедренного остроугольного треугольника, в котором AB = BC, пересекаются в точке H. В выпуклом пятиугольнике равны все стороны, а также равны четыре из пяти диагоналей. По кругу выписаны числа 1, 2, 3, ..., 10 в некотором порядке. Петя вычислил 10 сумм всех троек соседних чисел и написал на доске наименьшее из вычисленных чисел. Какое наибольшее число могло быть написано на доске? Являются ли подобными два прямоугольника: картина в рамке и
картина без рамки, если ширина рамки всюду одинакова (см. рис.)?
Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c. У Гриши есть 5000 рублей. В магазине продаются шоколадные зайцы по цене 45 рублей за штуку. Чтобы отнести зайцев домой, Грише придется купить ещё несколько сумок по 30 рублей за штуку. В одну сумку помещается не более 30 шоколадных зайцев. Гриша купил наибольшее возможное количество зайцев и достаточное количество сумок, чтобы донести в них всех зайцев. Сколько денег осталось у Гриши? У реки живет племя Мумбо-Юмбо. Однажды со срочным известием в соседнее племя одновременно отправились молодой воин Мумбо и мудрый шаман Юмбо. Мумбо побежал со скоростью 11 км/ч к ближайшему хранилищу плотов и затем поплыл на плоту в соседнее племя. А Юмбо, не торопясь, со скоростью 6 км/ч, пошел к другому хранилищу плотов и поплыл в соседнее племя оттуда. В итоге Юмбо приплыл раньше чем Мумбо. Река прямолинейна, плоты плывут со скоростью течения. Эта скорость всюду одинакова и выражается целым числом км/ч, не меньшим 6. Каково наибольшее возможное её значение? Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1? Прямая, проходящая через вершину C равнобедренного
треугольника ABC, пересекает основание AB в точке M,
а описанную окружность в точке N. Докажите, что
CM . CN = AC2
и
CM/CN = AM . BM/(AN . BN).
Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь его проекции на горизонтальную плоскость была наибольшей? Дан параллелограмм ABCD с острым углом при
вершине A. На лучах AB и CB отмечены точки H и K
соответственно так, что CH = BC и AK = AB. Докажите, что:
На столе лежат 7 карточек с цифрами от 0 до 6. Двое по очереди берут по одной карточке. Выигрывает тот, кто впервые из своих карточек сможет составить натуральное число, делящееся на 17. Кто выиграет при правильной игре – начинающий или его противник? В компании из k человек (k > 3) у каждого появилась новость, известная ему одному. За один телефонный разговор двое сообщают друг другу все известные им новости. Докажите, что за 2k – 4 разговора все они могут узнать все новости.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 363]
В компании из k человек (k > 3) у каждого появилась новость, известная ему одному. За один телефонный разговор двое сообщают друг другу все известные им новости. Докажите, что за 2k – 4 разговора все они могут узнать все новости.
В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1.
Впишите в следующее предложение какое-нибудь числительное (не цифрами, а словом или словами), чтобы предложение было верным. В этом предложении ______________________ гласных букв.
У Гриши есть 5000 рублей. В магазине продаются шоколадные зайцы по цене 45 рублей за штуку. Чтобы отнести зайцев домой, Грише придется купить ещё несколько сумок по 30 рублей за штуку. В одну сумку помещается не более 30 шоколадных зайцев. Гриша купил наибольшее возможное количество зайцев и достаточное количество сумок, чтобы донести в них всех зайцев. Сколько денег осталось у Гриши?
В очереди под дождём стояли 11 человек, каждый держал зонтик. Они стояли вплотную, то есть зонтики соседей соприкасались (см. рис).
Дождь закончился, люди закрыли зонтики и встали, соблюдая дистанцию в 50 см между соседями. Во сколько раз уменьшилась длина очереди? Людей можно считать точками, а зонтики — кругами радиуса 50 см.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 363]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке