ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Напишите в строку пять чисел, чтобы сумма каждых двух соседних чисел была отрицательна, а сумма всех чисел – положительна. На шахматной доске 5×5 клеток расставили 25 шашек – по одной на каждой клетке. Потом все шашки сняли с доски, но запомнили, на какой клетке стояла каждая. Можно ли ещё раз расставить шашки на доске таким образом, чтобы каждая шашка стояла на клетке, соседней с той, на которой она стояла в прошлый раз (соседняя по горизонтали или вертикали, но не наискосок)? Найдите наибольшее натуральное число, все цифры в десятичной записи которого различны и которое уменьшается в 5 раз, если зачеркнуть первую цифру. Замените в выражении ABC = DEF буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз. Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается извне третьей окружности радиуса R в точках A и B соответственно. Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D – точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что ∠AOD = 3∠ACD. Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды. Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5. Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах равные отрезки. Сколькими способами из полной колоды (52 карты) можно выбрать На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце? В параллелограмме ABCD острый угол равен α . Окружность радиуса r проходит через вершины A , B , C и пересекает прямые AD и CD в точках M и N . Найдите площадь треугольника BMN . Внутри угла расположены три окружности S1, S2, S3, каждая из которых касается двух сторон угла, причем окружность S2 касается внешним образом окружностей S1 и S3. Известно, что радиус окружности S1 равен 1, а радиус окружности S3 равен 9. Чему равен радиус окружности радиус окружности S2? Шесть на два. Восстановите числовой пример на деление
Если от некоторого трёхзначного числа отнять 6, то оно разделится на 7, если
отнять 7, то оно разделится на 8, а если отнять 8, то оно разделится на 9. |
Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 7526]
Разложите многочлен x8 + x4 + 1 на четыре множителя.
Известно, что сумма трех плоских углов при каждой вершине тетраэдра равна 1800. Докажите, что все его грани - равные треугольники.
Известно, что натуральное число n в 3 раза больше суммы своих цифр. Докажите, что n делится на 27.
Если от некоторого трёхзначного числа отнять 6, то оно разделится на 7, если
отнять 7, то оно разделится на 8, а если отнять 8, то оно разделится на 9.
На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°.
Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке