Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции.

Вниз   Решение


Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.

ВверхВниз   Решение


На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.

ВверхВниз   Решение


Имеется набор натуральных чисел, причём сумма любых семи из них меньше 15, а сумма всех чисел из набора равна 100.
Какое наименьшее количество чисел может быть в наборе?

ВверхВниз   Решение


В треугольнике ABC проведены медианы AM и BP. Известно, что  ∠APB = ∠BMA,  cos∠ACB = 0,8,  BP = 1.  Найдите площадь треугольника ABC .

ВверхВниз   Решение


Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если:
  а)  ∠A = 50°,  ∠B = 100°;
  б)  ∠A = α,  ∠B = β;
  в)  ∠C = 130°;
  г)  ∠C = γ.

ВверхВниз   Решение


В Чили в феврале проходил международный турнир по футболу. Первое место с 8 очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.)

ВверхВниз   Решение


В треугольнике ABC угол A – прямой, угол B равен 30°. В треугольник вписана окружность радиуса  .
Найдите расстояние от вершины C до точки касания этой окружности с катетом AB.

ВверхВниз   Решение


В параллелограмме ABCD на диагонали AC взята точка E, причём  AE : EC = 1 : 3,  а на стороне AD взята такая точка F, что  AF : FD = 1 : 2.  Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.

ВверхВниз   Решение


В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно a. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания.

ВверхВниз   Решение


На окружности радиуса 1 отмечена точка O и из неё циркулем делается засечка вправо радиусом l. Из полученной точки O1 в ту же сторону тем же радиусом делается вторая засечка, и так делается 1968 раз. После этого окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться?

ВверхВниз   Решение


Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите углы треугольника.

ВверхВниз   Решение


Математик с пятью детьми зашёл в пиццерию.
  Маша: Мне с помидорами и чтоб без колбасы.
  Ваня: А мне с грибами.
  Даша: Я буду без помидоров.
  Никита: А я с помидорами. Но без грибов!
  Игорь: И я без грибов. Зато с колбасой!
  Папа: Да, с такими привередами одной пиццей явно не обойдёшься...
Сможет ли математик заказать две пиццы и угостить каждого рeбенка такой, какую тот просил, или все же придется три пиццы заказывать?

ВверхВниз   Решение


Докажите, что через данную точку можно провести единственную плоскость, перпендикулярную данной прямой.

ВверхВниз   Решение


Существуют ли четыре подряд идущих натуральных числа, каждое из которых является степенью (большей 1) другого натурального числа?

Вверх   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 7526]      



Задача 35769

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 7,8,9

Найдите последние две цифры в десятичной записи числа  1! + 2! + ... + 2001! + 2002!.

Прислать комментарий     Решение

Задача 35775

Темы:   [ Стереометрия (прочее) ]
[ Векторы (прочее) ]
Сложность: 2+
Классы: 10,11

Существует ли отличный от куба шестигранник, у которого все грани являются равными ромбами?
Прислать комментарий     Решение


Задача 35776

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 7,8

Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду?

Прислать комментарий     Решение

Задача 35787

Темы:   [ Уравнения в целых числах ]
[ Деление с остатком ]
Сложность: 2+
Классы: 7,8,9

Существуют ли четыре подряд идущих натуральных числа, каждое из которых является степенью (большей 1) другого натурального числа?

Прислать комментарий     Решение

Задача 35788

Тема:   [ Выпуклые многоугольники ]
Сложность: 2+
Классы: 8,9

Внутри выпуклого многоугольника расположены две точки.
Докажите, что найдётся четырёхугольник с вершинами в вершинах этого многоугольника, содержащий эти две точки.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .