Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду?

Вниз   Решение


Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

ВверхВниз   Решение


Докажите, что если a и b – две стороны треугольника, γ – угол между ними и l – биссектриса этого угла, то

l = .

ВверхВниз   Решение


С числом 123456789101112...9989991000 производится следующая операция: зачёркиваются две соседние цифры a и b (a стоит перед b) и на их место вставляется число a + 2b (можно в качестве a взять нуль, ``стоящий'' перед числом, а в качестве b — первую цифру числа). С полученным числом производится такая же операция и т.д. (Например, из числа 118 307 можно на первом шаге получить числа 218 307, 38 307, 117 307, 111 407, 11 837, 118 314.) Доказать, что таким способом можно получить число 1.

ВверхВниз   Решение


Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5.

ВверхВниз   Решение


Две хорды окружности взаимно перпендикулярны.
Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

ВверхВниз   Решение


Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если  ∠A = 70°,  ∠C = 80°.

ВверхВниз   Решение


В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC .

ВверхВниз   Решение


Колода перфокарт четырёх цветов разложена в один ряд. Если две перфокарты одного цвета лежат рядом или через одну, то можно выбрасывать ту из них, которая левее. Кроме того, можно подкладывать справа любое количество перфокарт из других колод. Доказать, что можно подкладывать и выбрасывать перфокарты таким образом, чтобы в конце концов их осталось только четыре.

ВверхВниз   Решение


Окружность радиуса 2 касается окружности радиуса 4 в точке B. Прямая, проходящая через точку B , пересекает окружность меньшего радиуса в точке A, а большего радиуса – в точке C. Найдите BC, если  AC = 3

ВверхВниз   Решение


Найдите последние две цифры в десятичной записи числа  1! + 2! + ... + 2001! + 2002!.

ВверхВниз   Решение


Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что  AP = PK,  BQ : QL = 1 : 2,  CR : RN = 5 : 4.  Найдите площадь треугольника PQR.

ВверхВниз   Решение


Три окружности радиусов 3, 4, 5 внешне касаются друг друга. Через точку касания окружностей радиусов 3 и 4 проведена их общая касательная. Найти длину отрезка этой касательной, заключённой внутри окружности радиуса 5.

ВверхВниз   Решение


Из одной точки проведены к кругу две касательные. Длина касательной равна 156, а расстояние между точками касания равно 120. Найдите радиус круга.

Вверх   Решение

Задачи

Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 6702]      



Задача 52898

Темы:   [ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC  AC = 16,   BC = 12.  Из центра B радиусом BC описана окружность и к ней проведена касательная, параллельная гипотенузе AB (касательная и треугольник лежат по разные стороны от гипотенузы). Катет BC продолжен до пересечения с проведённой касательной. Определите, на сколько продолжен катет.

Прислать комментарий     Решение

Задача 52899

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Из одной точки проведены к кругу две касательные. Длина касательной равна 156, а расстояние между точками касания равно 120. Найдите радиус круга.

Прислать комментарий     Решение

Задача 52904

Темы:   [ Подобные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

AB и AC – касательные к окружности с центром O, M – точка пересечения прямой AO с окружностью; DE – отрезок касательной, проведённой через точку M, между AB и AC. Найдите DE, если радиус окружности равен 15, а  AO = 39.

Прислать комментарий     Решение

Задача 52929

Темы:   [ Две касательные, проведенные из одной точки ]
[ Ромбы. Признаки и свойства ]
[ Отношения площадей подобных фигур ]
Сложность: 3
Классы: 8,9

Площадь ромба ABCD равна 2. В треугольник ABD вписана окружность, которая касается стороны AB в точке K. Через точку K проведена прямая KL, параллельная диагонали AC ромба (точка L лежит на стороне BC). Найдите угол BAD, если известно, что площадь треугольника KLB равна a.

Прислать комментарий     Решение

Задача 52944

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке K . Найдите площадь треугольника CKB , если катет BC равен a и катета AC равен b .
Прислать комментарий     Решение


Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .