ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел. Каждая клетка клетчатой плоскости раскрашена в один из n² цветов так, что в каждом квадрате из n× клеток встречаются все цвета. Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в n цветов. На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре? Петя купил в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может выполнять следующие операции:
по любым числам x и y он вычисляет x + y, x − y и Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой. Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно. Двое играют в следующую игру. Каждый игрок по очереди вычёркивает 9 чисел (по своему выбору) из последовательности 1, 2, 3, ..., 100, 101. После одиннадцати таких вычёркиваний останутся два числа. Затем второй игрок присуждает первому столько очков, какова разница между этими оставшимися числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55 очков, как бы ни играл второй. Два одинаковых прямоугольных треугольника из бумаги удалось положить один на другой так, как показано на рисунке (при этом вершина прямого угла одного попала на сторону другого). Докажите, что заштрихованный треугольник равносторонний. Из натуральных чисел составляются последовательности, в которых каждое последующее число больше квадрата предыдущего, а последнее число в последовательности равно 1969 (последовательности могут иметь разную длину). Доказать, что различных последовательностей такого вида меньше чем 1969. а) a, b, c — длины сторон треугольника. Доказать, что
a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0.
В выпуклом четырёхугольнике ACBD, площадь которого равна 25, проведены диагонали. Известно, что SABC = 2 SBCD, а SABD = 3 SACD. Найдите площади треугольников ABC, ACD, ADB и BCD. В равнобедренном треугольнике ABC ∠B = arctg 8/15. Окружность радиуса 1, вписанная в угол C, касается стороны CB в точке M и отсекает от основания отрезок KE. Известно, что MB = 15/8. Найдите площадь треугольника KMB, если известно, что точки A, K, E, B следуют на основании AB в указанном порядке. Катеты прямоугольного треугольника равны a и b. Найдите длину биссектрису, проведённой из вершины прямого угла. Существует ли отличный от куба шестигранник, у которого все грани являются равными ромбами? Угол при вершине A ромба ABCD равен 20°. Точки M и
N – основания перпендикуляров, опущенных из вершины B на
стороны AD и CD. Докажите, что для любого натурального n существует выпуклый многоугольник, имеющий ровно n осей симметрии. |
Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 6702]
В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.
В окружность вписан прямоугольник ABCD , сторона AB которого равна a . Из конца K диаметра KP , параллельного стороне AB , сторона BC видна под углом β . Найдите радиус окружности.
Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.
Докажите, что для любого натурального n существует выпуклый многоугольник, имеющий ровно n осей симметрии.
Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.
Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке