Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

Вниз   Решение


Есть шоколадка в форме равностороннего треугольника со стороной n, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого n выясните, кто из играющих может всегда выигрывать, как бы не играл противник?

ВверхВниз   Решение


Многочлен P(x) с действительными коэффициентами таков, что уравнение  P(m) + P(n) = 0  имеет бесконечно много решений в целых числах m и n.
Докажите, что у графика  y = P(x)  есть центр симметрии.

ВверхВниз   Решение


В бесконечной последовательности  a1, a2, a3, ... число a1 равно 1, а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то  an = an–1 + 1,  если же остаток равен 3, то  an = an–1 – 1.  Докажите, что в этой последовательности
  а) число 1 встречается бесконечно много раз;
  б) каждое натуральное число встречается бесконечно много раз.
(Вот первые члены этой последовательности: 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, ...)

ВверхВниз   Решение


В квадрате 3×3 расставлены числа (см. рис.). Известно, что квадрат магический: сумма чисел в каждом столбце, в каждой строке и на каждой диагонали одна и та же. Докажите, что
  а)  2(a + c + g + i) = b + d + f + h + 4e.
  б)  2(a³ + c³ + g³ + i³) = b³ + d³ + f ³ + h³ + 4e³.

ВверхВниз   Решение


Скажем, что колода из 52 карт сложена правильно, если каждая пара лежащих рядом карт совпадает по масти или достоинству, то же верно для верхней и нижней карты, и наверху лежит туз пик. Докажите, что число способов сложить колоду правильно
  а) делится на 12!;
  б) делится на 13!.

ВверхВниз   Решение


Целые числа a, b и c таковы, что числа  a/b + b/c + c/a  и  a/с + с/b + b/a  тоже целые. Докажите, что  |a| = |b| = |c|.

ВверхВниз   Решение


Автор: Бегун Б.И.

В углу шахматной доски размером m×n полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?

ВверхВниз   Решение


В квадрате клетчатой бумаги 10×10 нужно расставить один корабль 1×4, два – 1×3, три – 1×2 и четыре – 1×1. Корабли не должны иметь общих точек (даже вершин) друг с другом, но могут прилегать к границам квадрата. Докажите, что
  а) если расставлять их в указанном выше порядке (начиная с больших), то этот процесс всегда удается довести до конца, даже если в каждый момент заботиться только об очередном корабле, не думая о будущих;
  б) если расставлять их в обратном порядке (начиная с малых), то может возникнуть ситуация, когда очередной корабль поставить нельзя.

ВверхВниз   Решение


На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)

ВверхВниз   Решение


Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.

ВверхВниз   Решение


В пространстве даны несколько точек и несколько плоскостей. Известно, что через любые две точки проходят ровно две плоскости, а каждая плоскость содержит не меньше четырех точек. Верно ли, что все точки лежат на одной прямой?

ВверхВниз   Решение


На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что  AK² = LK·KM.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1956]      



Задача 56461  (#01.006)

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 3-
Классы: 8,9

На стороне AD параллелограмма ABCD взята точка P так, что  AP : AD = 1 : n,  Q – точка пересечения прямых AC и BP.
Докажите, что  AQ : AC = 1 : (n + 1).

Прислать комментарий     Решение

Задача 56462  (#01.007)

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т. д.).
Докажите, что центры обоих параллелограммов совпадают.

Прислать комментарий     Решение

Задача 56463  (#01.008)

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что  AK² = LK·KM.

Прислать комментарий     Решение

Задача 56464  (#01.009)

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Диаметр, основные свойства ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Одна из диагоналей вписанного в окружность четырёхугольника является диаметром.
Докажите, что проекции противоположных сторон на другую диагональ равны.

Прислать комментарий     Решение

Задача 56465  (#01.010)

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

На основании AD трапеции ABCD взята точка  E так, что  AE = BC.  Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно.
Докажите, что если  BO = PD,  то  AD² = BC² + AD·BC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .