ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что высоты треугольника пересекаются в одной точке. Дан выпуклый пятиугольник, все углы которого тупые. Докажите,
что в нем найдутся две такие диагонали, что круги, построенные
на них как на диаметрах, полностью покроют весь пятиугольник.
Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE. Прожектор освещает угол величиной
90o. Докажите, что в
любых четырех заданных точках можно разместить 4 прожектора так,
что они осветят всю плоскость.
Пусть p(n) – количество разбиений числа n
(определение разбиений смотри здесь). Докажите равенства: p(0) + p(1)x + p(2)x '' + ... = (1 + x + x² + ...)...(1 + xk + x2k + ...)... = (1 – x)–1(1 – x²)–1(1 – x³)–1...
(По определению считается, что p(0) = 1.) а) Докажите, что площадь четырехугольника, образованного серединами
сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке. Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них. На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан? На стороне AC треугольника ABC взята точка E. Через точку E
проведены прямая DE параллельно стороне BC и прямая EF параллельно
стороне AB (D и E — точки соответственно на этих сторонах).
Докажите, что
SBDEF = 2 На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая l пересекает её ровно в 1985 точках. Даны точки A и B и окружность S. Постройте
на окружности S такие точки C и D, что AC| BD и дуга
CD имеет данную величину На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём α + β + γ = 60°. Прямые BC1 и B1C пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ. Найти хотя бы одно целочисленное решение уравнения a²b² + a² + b² + 1 = 2005. Многоугольник описан около окружности радиуса r.
Докажите, что его площадь равна pr, где p — полупериметр
многоугольника.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]
Докажите, что площадь выпуклого четырехугольника равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними.
Пусть E и F — середины сторон BC и AD
параллелограмма ABCD. Найдите площадь четырехугольника, образованного
прямыми AE, ED, BF и FC, если известно, что площадь ABCD равна S.
Многоугольник описан около окружности радиуса r.
Докажите, что его площадь равна pr, где p — полупериметр
многоугольника.
Точка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$.
Пусть
A1, B1, C1 и D1 — середины
сторон
CD, DA, AB, BC квадрата ABCD, площадь которого равна S.
Найдите площадь четырехугольника, образованного
прямыми
AA1, BB1, CC1 и DD1.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке